Measurements of axial length and radius of corneal curvature in the rabbit eye

Gulhal Bozkir* Murat Bozkir† Hakki Dogan‡
Kenan Aycan** Baki Guler††

*The Çukurova University,
†The Erciyes University,
‡The Erciyes University,
**The Erciyes University,
††The Erciyes University,
Measurements of axial length and radius of corneal curvature in the rabbit eye*

Gulhal Bozkir, Murat Bozkir, Hakki Dogan, Kenan Aycan, and Baki Guler

Abstract

The axial length of the eye, the radius of the anterior corneal surface, and the diameter of the cornea were measured on 40 eyes of 20 New Zealand White rabbits. The ultrasonographic measurements of the axial length of the eye showed a mean value of 15.12 ± 0.51mm (15.33 ± 0.50mm in males, 14.96 ± 0.46mm in females). The mean corneal radius was 7.26 ± 0.26mm (7.18 ± 0.9mm in males, 7.32 ± 0.33 mm in females); the mean value of the difference in corneal curvature between two principle meridians was 0.21 ± 0.12mm; and the mean horizontal and vertical diameters of the cornea were 13.41 ± 0.34mm and 13.02 ± 0.30mm, respectively. Although the diameter of the cornea of rabbits was bigger than that of humans (average, horizontal 11.75mm, vertical 10.55mm), the axial length of the eye was 0.7 times that of humans (23-24mm), and the radius of corneal curvature was relatively smaller than that in humans (7.7-7.8mm).

KEYWORDS: rabbit eye, bulbus oculi, radius of cornea, axial length

*PMID: 9057929 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Measurements of Axial Length and Radius of Corneal Curvature in the Rabbit Eye

Gülhal Bozkir, Murat Bozkir, Hakki Dogan, Kenan Aycan, and Baki Guler

Department of Anatomy, School of Medicine, The Çukurova University, Adana 01330, Türkiye, *Department of Ophthalmology, School of Medicine, The Erçiyus University, Kayseri 38039, Türkiye and †Department of Anatomy, School of Medicine, The Erçiyus University, Kayseri 38039, Türkiye

The axial length of the eye, the radius of the anterior corneal surface, and the diameter of the cornea were measured on 40 eyes of 20 New Zealand White rabbits. The ultrasonographic measurements of the axial length of the eye showed a mean value of 15.12 ± 0.51 mm (15.33 ± 0.50 mm in males, 14.96 ± 0.46 mm in females). The mean corneal radius was 7.26 ± 0.26 mm (7.18 ± 0.9 mm in males, 7.32 ± 0.33 mm in females); the mean value of the difference in corneal curvature between two principal meridians was 0.21 ± 0.12 mm; and the mean horizontal and vertical diameters of the cornea were 13.41 ± 0.34 mm and 13.02 ± 0.30 mm, respectively. Although the diameter of the cornea of rabbits was bigger than that of humans (average, horizontal 11.75 mm, vertical 10.55 mm), the axial length of the eye was 0.7 times that of humans (23-24 mm), and the radius of corneal curvature was relatively smaller than that in humans (7.7-7.8 mm).

Key words: rabbit eye, bulbus oculi, radius of cornea, axial length

The rabbit is a classic experimental laboratory animal for ocular research as it is cheap and easy to handle and manipulate. A large amount of rabbit data were found in the ophthalmic literature. Thickness of the lens and depth of the vitreous were measured by ultrasonography in rabbit eyes (1). Furthermore, rabbits are very useful in corneal refractive surgical studies (2-4), and have been widely used also for keratoplasty research (5).

The rabbit, however, has drawbacks as an experimen-

tal animal for refractive corneal surgery, since the cornea is thinner, flippier and more elastic than that in humans and also lacks Bowman’s layer. The rabbit cornea heals much more rapidly than humans, and vascularizes more easily. The corneal endothelium heals readily in rabbits with considerable mitotic activity, in contrast with no mitotic activity in the adult human corneal endothelium (6).

The aims of the present study were to determine the axial length of the eye, the radius of the anterior corneal surface and the diameter of the cornea to provide basic data for the surgical procedures performed in the rabbit eye.

Materials and Methods

Forty eyes of 20 New Zealand White rabbits at 5 months of age (2-3 kg weighing, 9 males, 11 females) were used for this research. The horizontal and vertical diameters of the cornea were measured with a millimetric ruler. The radius of curvature of the cornea was determined by Javal Keratometer (Carl Zeiss Jena, DDR, Germany) in along the two main axes. The mean value of the corneal radius in each eye was calculated from the mean values for the two axes.

We also determined corneal astigmatism, which was defined as differences between the radius in two axes. Local anesthesia was induced with oxybuprocaine hydrochloride (Benoxinate 0.4% Thilo®) eye drop. The axial length of each eye was measured three times by scan SONOMED 2000 ocular ultrasound (10 MHz) (Sonomed Inc; Lake Success, NY, USA) and an average value was calculated.

The Mann-Whitney U-test was used for data compari-

*To whom correspondence should be addressed.
Results

The ocular axial length was 14.96 ± 0.46 mm (mean ± SD) in female rabbits and 15.33 ± 0.50 mm in male rabbits, with a pooled average of 15.12 ± 0.51 mm (Table). The eye length in females was significantly greater than that in males ($P < 0.025$). The average radius of the corneal curvature was 7.32 ± 0.33 mm in females and 7.18 ± 0.09 mm in males, with the average of both being 7.26 ± 0.26 mm (Table). Corneal astigmatism was found in 19 eyes of 11 female and 15 eyes of 9 male rabbits. The corneas in the remaining eyes were spheric.

The average corneal astigmatism was 0.20 ± 0.14 mm in females and 0.15 ± 0.11 mm in males, with the average of both being 0.18 ± 0.13 mm (Table). Of the total 34 astigmatic eyes, 24 (71%) had with-the-rule astigmatism while 10 (29\%) had against-the-rule astigmatism. The horizontal diameter of the cornea was 13.5 ± 0.31 mm in females and 13.31 ± 0.35 mm in males, with a pooled average of 13.41 ± 0.34 mm (Table). The vertical diameter of the cornea was found to be 12.96 ± 0.26 mm in females and 13.11 ± 0.32 mm in males, with the average of both being 13.02 ± 0.30 mm (Table). No significant difference ($P > 0.05$) in the measurements was observed between females and males except with regard to the axial length of the eye.

<table>
<thead>
<tr>
<th>Table</th>
<th>Measurements in rabbit eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of eyes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
</tbody>
</table>

NS: Not significant
Discussion

The radius of the curvature of the rabbit cornea (7.26 ± 0.26 mm) was found to be lower than the average measure of 7.7-7.8 mm in eyes of adult humans, indicating that the rabbit cornea had about 3.5 diopters more refractive power. Optically, the steeper curvature of the rabbit cornea can be balanced by the shorter axial length of the rabbit eye (1.5 mm shorter). However, the axial length of the rabbit eye (15.12 ± 0.51 mm) was markedly shorter than the human length of 23-24 mm (7). Therefore, the rays of light focusing on the rabbit retina may be explained by the fact that the rabbit lens is almost spherical and has greater refractive power (1). The refractive power of the cornea in male rabbits was greater than that of females, while the axial length of the male rabbit eyes was greater than that of females, contrary to what was expected from human correlation data. These facts suggest that other refractive factors must compensate. The difference in the curvature between the two principal meridians creates corneal astigmatism. In with-the-rule astigmatism, the vertical meridian is steepest as it occurs more frequently in humans. In against-the-rule astigmatism, the horizontal meridian is steepest. The astigmatism in the rabbit cornea shows a similar tendency to that in the human cornea.

The horizontal (13.41 ± 0.34 mm) and vertical (13.02 ± 0.30 mm) diameters of the rabbit cornea were found to be greater than the average horizontal (11.75 mm) and vertical (10.55 mm) diameters of the human cornea. Like humans, the horizontal diameter of the cornea was found to be greater than the vertical diameter. Since the rabbit cornea is thinner than humans, experimental radial keratotomy in rabbits is rather restricted (7). The large rabbit cornea, however, allows incisions to be placed more peripherally and diopters to be gained in spite of the cornea.

In conclusion, the results obtained in this study would be of value for future experimental refractive surgery and intraocular lens implantation done on rabbit eyes.

References

Received August 5, 1996; accepted November 12, 1996.