A 15N GC/MS Study of in Vivo Glutamine Synthesis in Liver Failure Rats

Hirohumi Morishita* Minoru Ukida† Youichi Morimoto‡
Masayuki Mikami** Takao Tsuji††

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
††Okayama University,

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.
A 15N GC/MS Study of in Vivo Glutamine Synthesis in Liver Failure Rats*

Hirohumi Morishita, Minoru Ukida, Youichi Morimoto, Masayuki Mikami, and Takao Tsuji

Abstract

To clarify the nature of nitrogen metabolism between branched chain amino acid (BCAA) and glutamine (Gln) in liver failure, we measured arterial plasma concentrations of Gln and 15N uptake to amino-N and amide-N of Gln in normal and D-galactosamine-induced fulminant hepatic failure (FHF) rats after 15N-leucine (Leu) injection. Fifteen, 30 and 60 min after Leu injection, the arterial plasma concentrations of Gln were significantly higher in FHF rats than in controls. The concentrations of amino-15N Gln were also significantly higher in FHF rats than in controls at 5, 15, 30 and 60 min after injection. The concentrations of amide-15N Gln did not significantly differ between FHF and controls at 5, 15 and 30 min. However, at 60 min, the concentration was significantly higher in the FHF rats. The higher uptake of 15N to amino-N of Gln in FHF rats suggests the presence of an enhanced ability to synthesize Gln from Leu in FHF rats. The higher uptake of 15N to amide-N of Gln in FHF rats at 60 min after injection suggests that excessive administration of BCAA to patients with severely impaired urea-cycle capacity suffering with hepatic failure may lead to greater levels of hyperammonemia.

KEYWORDS: stable isotopes, mass fragmentography, fulminant hepatic failure, branched-chain amino acids, glutamine

*PMID: 9439771 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
A 15N GC/MS Study of In Vivo Glutamine Synthesis in Liver Failure Rats

Hirohumi MORISHITA*, Minoru UKIDA, Youichi MORIMOTO, Masayuki MIKAMI and Takao TSUJI
First Department of Internal Medicine, Okayama University Medical School, Okayama 700, Japan

To clarify the nature of nitrogen metabolism between branched chain amino acid (BCAA) and glutamine (Gln) in liver failure, we measured arterial plasma concentrations of Gln and 15N uptake to amino-N and amide-N of Gln in normal and D-galactosamine-induced fulminant hepatic failure (FHF) rats after 15N-leucine (Leu) injection. Fifteen, 30 and 60 min after Leu injection, the arterial plasma concentrations of Gln were significantly higher in FHF rats than in controls. The concentrations of amino-15N Gln were also significantly higher in FHF rats than in controls at 5, 15, 30 and 60 min after injection. The concentrations of amide-15N Gln did not significantly differ between FHF and controls at 5, 15 and 30 min. However, at 60 min, the concentration was significantly higher in the FHF rats. The higher uptake of 15N to amino-N of Gln in FHF rats suggests the presence of an enhanced ability to synthesize Gln from Leu in FHF rats. The higher uptake of 15N to amide-N of Gln in FHF rats at 60 min after injection suggests that excessive administration of BCAA to patients with severely impaired urea-cycle capacity suffering with hepatic failure may lead to greater levels of hyperammonemia.

Key words: stable isotopes, mass fragmentography, fulminant hepatic failure, branched-chain amino acids, glutamine

Since Fischer et al. proposed the plasma amino acids imbalance theory to explain the mechanism of hepatic encephalopathy (1), intravenous administration of branched chain amino acids (BCAA) solution has been commonly used to treat hepatic encephalopathy. The bulk of BCAA are taken up not only by brain tissue but also by extrahepatic peripheral tissues such as skeletal muscle, adipose tissue and splanchic organs. Among these organs and tissues, the major site that extracts BCAA is skeletal muscle (2, 3), where alanine (Ala) and glutamine (Gln) are synthesized from BCAA and then released into venous blood (4-6). In patients with chronic hepatic encephalopathy, skeletal muscle production of Gln is thought to increase to dispose of excess NH4 (7, 8). The production rate of alanine has been shown to be significantly lower in fulminant hepatic failure (FHF) rats after intravenous injection of 15N-leucine (9). And the problem of the nitrogen transfer from leucine to glutamine in hepatic failure remains unresolved, because of difficulties in measuring its kinetics using the 15N tracer method. Measuring 15N enrichment of two nitrogen atoms (amino- and amide-N) of Gln was difficult and time consuming until Nissim et al. simplified the determination using the GC-MS method (10). With some modification of their method, we previously reported the result of arterial plasma 15N enrichment of amide-N of Gln after intravenous injection of 15NH4Cl into normal rats (11). The aim of the present study is to investigate the nitrogen transfer pathway from Leu to Gln in FHF rats.

Materials and Methods

Male Sprague-Dawley rats, weighing approximately 250 g, were fed a standard diet (CE-2, Clea Japan, Inc., Tokyo, Japan) and water ad libitum prior to the experiments. The rats were divided into two groups: FHF (n = 26) and the control group (n = 20). To prepare the FHF rats, D-galactosamine was administered intraperitoneally at a dose of 2.0 g per kg of body weight dissolved in 1 ml of physiological saline. The animals were fasted for 16 h prior to the experiments which were performed 48 h after

*To whom correspondence should be addressed.
the injection of D-galactosamine. The control rats received intraperitoneal injections of physiological saline, and were starved for 16h prior to the experiments. All animals received bolus injections of 15N-labeled Leu (95.0 atom %) at a dose of 200mg per kg of body weight dissolved in 2.5ml of deionized water intravenously via the tail vein. Blood was drawn from the abdominal aorta before and 5, 15, 30 and 60 min after the injection of Leu. Plasma was immediately separated with sodium heparin as an anticoagulant.

Analytical methods. Plasma amino acid concentrations were determined with an Irica Amino Acid Analyzer A-5500E (Irica Kikai Co. Ltd., Tokyo, Japan). Specimens were deproteinized with 5% sulfosalicylic acid. 15N enrichment in glutamine-amino-N and glutamine-amide-N were determined by gas chromatography and mass spectrometry (GC/MS), according to the methods described by Nissim et al. (10), after some modification as presented in our previous report (11).

Plasma sample preparation for GC/MS. Plasma samples (500μl) were mixed with three times their volumes of 1M acetic acid. Samples were then applied directly to an ion-exchange column, filled with 2ml Dowex 50W cation-exchange resin. Each column was washed with 10ml distilled water, and the effluent was discarded. The amino acids were eluted with 3.5ml of 3M ammonium hydroxide solution. The eluted amino acid fractions were lyophilized to dryness. To remove the last traces of water, the samples were then azeotroped once with 500μl aliquots of methylene chloride. To the residue of the plasma sample, 500μl of trifluoroacetic anhydride (TFAA) was added. The vials were capped, then sonicated for 2-3 min at 70°C in a block heater. After cooling to room temperature, the excess TFAA was removed under a gentle stream of dry nitrogen, and the residue was dissolved in 30μl of methylene chloride. The same procedure was also applied to the calibration solutions.

Gas chromatography-mass spectrometry analysis. The derivatized plasma samples and calibration samples were analyzed on a GCMS 9020-DF (Shimadzu Co., Kyoto, Japan) interfaced to a SCAP1123 data analyzing system.

Derivatized glutamine was separated from other components on a 5-m × 3-mm glass column packed with 3% silicone OV-17. GC conditions were as follows: injector temperature, 250°C; helium flow rate, 20ml/min; temperature program, 190°C isothermal for 1 min then 10°C/min elevation. The MS conditions were as follows: ion source, 150°C; separator temperature, 250°C; ionizing energy, 20eV. To determine amino-15N enrichment of glutamine, mass fragments were monitored at 181 and 182 (m/z) (Figs. 1, 2). For amide-15N enrichment of glutamine, monitored mass fragments were 111 and 112 (m/z) (Figs. 1, 2).

![Fig. 1 Glutamine-TFA derivative and its mass fragmentation.](image1)

![Fig. 2 Mass spectrogram of glutamine-TFA derivative.](image2)
Results

Calibration solutions. Calibration solutions for plasma enrichment with amino-\(^{15}\)N glutamine were prepared by adding 156.8, 78.4 and 39.2 nmol/ml of 95 atom % amino-\(^{15}\)N glutamine to an equal volume of fresh heparinized plasma samples containing 691.5 nmol/ml glutamine to achieve a final enrichment of 17.5, 9.6 and 5.1 atom % excess, respectively (Fig. 3). Calibration solutions for plasma enrichment with amide-\(^{15}\)N glutamine were similarly prepared to achieve a final enrichment of 9.7, 5.1 and 2.6 atom % excess, respectively. Calibration curves showed good linearity (Fig. 3).

Changes in glutamine, amino-\(^{15}\)N-glutamine and amide-\(^{15}\)N-glutamine concentrations. Plasma Gln concentrations showed a slight decrease in control rats after \(^{15}\)N-Leu injection, but there was no decrease or significant increase at 60 min in the FHF rats (Table 1). Comparing the two groups, a higher plasma Gln concentration was observed in the FHF group from 15 min to 60 min after Leu injection.

Higher plasma concentrations of amino-\(^{15}\)N-Gln were observed in the FHF group during the study period.

Plasma concentrations of amide-\(^{15}\)N-Gln changed similarly in both groups until 30 min but at 60 min a higher concentration was observed in the FHF rats. Comparing the two groups, only the concentration at 60 min was significantly higher in the FHF group.

Discussion

In this study, a higher concentration of amino-\(^{15}\)N-Gln after \(^{15}\)N-Leu injection was observed in the FHF group as compared with that in the controls. This result probably indicates that in hepatic failure, peripheral tissues play an important role in eliminating high blood NH\(_3\) by synthesis and release of Gln after uptake of Leu and blood NH\(_3\). These facts support the previously reported results of Ganda et al. (7) and Morimoto et al. (11, 12).

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Gln conc (nmol/ml)</th>
<th>Amino-(^{15})N Gln conc (nmol/ml)</th>
<th>Amide-(^{15})N Gln conc (nmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>FHF</td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td>629 ± 21</td>
<td>647 ± 105</td>
<td>-0.04 ± 0.44</td>
</tr>
<tr>
<td>5</td>
<td>671 ± 70</td>
<td>837 ± 283</td>
<td>6.39 ± 1.40</td>
</tr>
<tr>
<td>15</td>
<td>553 ± 38</td>
<td>1,042 ± 233**</td>
<td>22.36 ± 6.39</td>
</tr>
<tr>
<td>30</td>
<td>482 ± 45</td>
<td>816 ± 269**</td>
<td>21.89 ± 5.01</td>
</tr>
<tr>
<td>60</td>
<td>463 ± 44</td>
<td>1,890 ± 588**</td>
<td>17.14 ± 4.56</td>
</tr>
</tbody>
</table>

Gln conc: glutamine concentration; FHF: fulminant hepatic failure. **\(P < 0.01\), *\(P < 0.05\). Mean ± SD.
Another important finding in the present study is that a higher arterial plasma concentration of amide-\(^{15}\)N Gln was observed at 60 min after \(^{15}\)N-Leu in the FHF group than in the control group. In many animal species, the gut, especially the small intestine, actively takes up arterial Gln and releases NH\(_3\), alanine, citrulline and proline to portal blood after removing two nitrogen atoms from Gln (13–17). In like fashion, we believe that the amino-\(^{15}\)N-Gln synthesized and released from peripheral tissue after taking up \(^{15}\)N-Leu was metabolized in the rat’s gut, then \(^{15}\)NH\(_3\) was produced de novo. This \(^{15}\)NH\(_3\) is supposed to be transported through the portal vein to the liver and utilized for urea synthesis. However, as Morimoto et al. (12) previously reported, since the capacity of the urea cycle is impaired in hepatic failure, a larger amount of \(^{15}\)NH\(_3\) appears to be transported again into extrarenal peripheral tissues to form amide-\(^{15}\)N-labeled Gln. According to these results, BCAA administration may cause a worsening of hepatic failure due to nitrogen over-loading, if reserve capacity and blood supply to the liver is not accurately assessed.

Considering the above observations, some peculiarities in previously reported clinical studies can be more easily understood. For example, Weber et al. reported a decrease in blood NH\(_3\) after administering BCAA solution to patients with barely stable liver cirrhosis (18). Also a transient elevation of blood NH\(_3\) was reported in liver cirrhosis patients after oral administration of BCAA (19). Moreover, in fulminant hepatitis patients, Takahashi et al. noted that the use of BCAA solution was a significant factor in deterioration of the prognosis (20). Thus, the metabolic relationship of BCAA and blood NH\(_3\) during severe liver failure has not yet been thoroughly elucidated. Future studies should quantitatively evaluate their metabolic relationships in each organ using a method such as perfusion.

References

Received March 12, 1997; accepted August 27, 1997.