Percutaneous transhepatic portal catheterization—modification of Chiba method and portal vein pressure in liver diseases.

Toshio Ito, Okayama University
Tatsuya Itoshima, Okayama University
Shuzo Kiyotoshi, Okayama University
Kenji Kawaguchi, Okayama University
Hiromichi Ōgawa, Okayama University
Masahiro Kitadai, Okayama University
Shuzo Hattori, Okayama University
Toshihiro Maruyama, Okayama University
Jun Tomoda, Okayama University
Shigeru Morichika, Okayama University
Fumio Munetomo, Mihara Red Cross Hospital
Hideo Nagashima, Okayama University
Percutaneous transhepatic portal catheterization-modification of Chiba method and portal vein pressure in liver diseases.*

Toshio Ito, Tatsuya Itoshima, Shuzo Kiyotoshi, Kenji Kawaguchi, Hiromichi Ogawa, Masahiro Kitadai, Shuzo Hattori, Toshihiro Maruyama, Jun Tomoda, Shigeru Morichika, Fumio Munetomo, and Hideo Nagashima

Abstract

Percutaneous transhepatic portal catheterization was performed in 68 cases of liver diseases in the 2 year period from 1978 to 1980. The Chiba University method was modified. Portal vein catheterization was successful in 61 cases (90%). Selective splenic vein catheterization was successful in 55 of the 61 cases (90%) and selective superior mesenteric vein catheterization in 59 cases (97%). The liver was punctured an average of 4.6 times in order to successfully insert the catheter into the main portal vein, and the number of punctures was less than 10 in 57 of the 61 cases (93%). The portal vein pressure was 310+/-67 mm H2O in idiopathic portal hypertension (8 cases), 290+/-83 in liver cirrhosis (33 cases), 193+/-71 in chronic hepatitis (7 cases) and 166+/-50 in fatty liver (4 cases). Portal vein pressure rose from 205+/-75 to 380+/-55 mm H2O in 11 cases after forced Valsalva maneuver. No major complications were encountered.

KEYWORDS: percutaneous transhepatic portal catheterization(PTP), portal vein pressure, portal hypertension, forced Valsalva maneuver

*PMID: 7136852 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
PERCUTANEOUS TRANSHEPATIC PORTAL CATHETERIZATION-MODIFICATION OF CHIBA METHOD AND PORTAL VEIN PRESSURE IN LIVER DISEASES

Toshio ITO, Tatsuya ITOSHIMA, Shozo KIYOTOSHI, Kenji KAWAGUCHI
Hiromichi OGAWA, Masahiro KITADA, Shuzo HATTORI
Toshihiro MARUYAMA, Jun TOMODA, Shigeru MORICHIKA
*Fumio MUNETOMO and Hideo NAGASHIMA

First Department of Internal Medicine, Okayama University Medical School,
Okayama 700, Japan; and *Mihara Red Cross Hospital, Mihara 723, Japan
Received October 20, 1981

Abstract. Percutaneous transhepatic portal catheterization was performed in 68 cases of liver diseases in the 2 year period from 1978 to 1980. The Chiba University method was modified. Portal vein catheterization was successful in 61 cases (90%). Selective splenic vein catheterization was successful in 55 of the 61 cases (90%) and selective superior mesenteric vein catheterization in 59 cases (97%). The liver was punctured an average of 4.6 times in order to successfully insert the catheter into the main portal vein, and the number of punctures was less than 10 in 57 of the 61 cases (93%). The portal vein pressure was 310 ± 67 mm H2O in idiopathic portal hypertension (8 cases), 290 ± 83 in liver cirrhosis (33 cases), 193 ± 71 in chronic hepatitis (7 cases) and 166 ± 50 in fatty liver (4 cases). Portal vein pressure rose from 205 ± 75 to 380 ± 55 mm H2O in 11 cases after forced Valsalva maneuver. No major complications were encountered.

Key words: percutaneous transhepatic portal catheterization (PTP), portal vein pressure, portal hypertension, forced Valsalva maneuver.

Percutaneous transhepatic portal vein puncture was first reported by Berman (1) in 1955. Reynolds et al (2) showed in 1970 that the portal vein pressure measured transhepatically was almost equivalent to the wedge hepatic vein pressure. Clinical use of percutaneous transhepatic portal catheterization (PTP) was first described by Lunderquist and Vang (3, 4) in 1970. Since then, this technique has proved to be a simple and safe method with few complication (5-8) and is used widely to localize gastrointestinal hormone-producing tumors (9-17) and to control gastroesophageal variceal bleeding (18-43). The present study describes our experience with PTP in 68 cases, modification of the PTP technique, and demonstration of marked elevation of the portal pressure after the Valsalva maneuver.

MATERIALS AND METHODS

Subjects. Sixty-eight patients with liver diseases were submitted to PTP in the 2 year
period from December 1978 to November 1980. Their diagnoses are shown in Table 1. Sixty-six patients were diagnosed histologically by liver biopsy under the peritoneoscope or at laparotomy, and 2 patients were diagnosed clinically.

Methods. A PTC needle (0.7 mm in diameter, 15 cm in length; the so-called Chiba needle, Top Co., Tokyo) was introduced into the liver through an intercostal space between the 6th and 9th space in the right midaxillary line with the patients in the supine position and under local anesthesia. With breath-holding in shallow aspiration, the needle was advanced toward the liver hilum, which was identified 1/3 distance from the gas shadow in the duodenal bulb to the convex of the right diaphragm and 3 cm from the right side of the vertebra (Fig. 1-1). The needle was stopped at the liver hilum. Then, a 10 ml syringe filled with contrast medium (60.2% to 82.3% metrizoic acid, Isopaque, Torii & Co., Tokyo) was connected to the needle. The needle was withdrawn slowly until blood was easily aspirated

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver cirrhosis (LC)</td>
<td>37 (3)</td>
</tr>
<tr>
<td>Idiopathic portal hypertension (IPH)</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Idiopathic portal hypertension (IPH)</td>
<td></td>
</tr>
<tr>
<td>(Post splenectomy)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Chronic hepatitis (CH)</td>
<td>7</td>
</tr>
<tr>
<td>Fatty liver (FL)</td>
<td>5</td>
</tr>
<tr>
<td>Other liver diseases (OLD)</td>
<td>7</td>
</tr>
<tr>
<td>Hematological diseases (HD)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>68 (8)</td>
</tr>
</tbody>
</table>

PTP; percutaneous transhepatic portal catheterization, PTO; percutaneous transhepatic obliteration of the vein, () ; patients submitted to PTO.

Fig. 1. Procedures of PTP (see text). RD; right diaphragm, DB; duodenal bulb, a; PTC needle, b; stylet, c; PTP needle, d; teflon catheter, e; guide wire, f; polyethylene catheter.
PTP in Liver Diseases

(Fig. 1-2). If blood was not easily aspirated during withdrawal of the needle, the needle was removed completely from the liver, and repuncture was attempted from the same puncture site in another direction near the liver hilum. If blood was easily aspirated, a little amount of contrast medium was injected to ascertain if the needle tip was located in a portal branch suitable for insertion of a catheter. Then, a metallic stylet (0.4 mm in diameter, 50 cm in length) was inserted through the PTC needle and the needle was withdrawn (Figs. 1-3, 1-4). A PTP teflon catheter (outer catheter, 2.0 to 2.6 mm in diameter) with an inner needle (1.3 to 1.8 mm in diameter, 30 cm in length, Hakko Shoji Co., Tokyo) was introduced using the inserted stylet as a guide (Fig. 1-5). The PTP needle and the stylet were withdrawn leaving the catheter (Fig. 1-6), through which a flexible J-shaped guide wire (0.70 to 0.87 mm in diameter; Cook Inc., Bloomington, Indiana) was inserted into the main portal vein (Fig. 1-7). Then, the catheter was advanced to the portal vein with the guide wire (Fig. 1-8). After withdrawal of the guide wire, a polyethylene catheter (inner catheter; 1.0 to 1.7 mm in diameter, 50 to 60 cm in length, Cook Inc.) was inserted into the teflon catheter (Fig. 1-9). Selective catheterization of the splenic vein, superior mesenteric vein, gastric coronary vein or short gastric vein was performed by the aid of the guide wire.

The portal vein pressure was measured at the main portal vein (PV), splenic vein (SPV) and superior mesenteric vein (SMV) with a water manometer setting the zero point 10 cm above the table top. The catheter was placed within the main portal vein, and the tip was kept free. Portal vein pressure elevation was recorded when the patient was ordered to say his name, age and address, to have 10 coughs, and to perform a forced Valsalva maneuver. Portography was performed 2 times keeping the catheter in the SPV and SMV. After the catheter tip was confirmed as not being wedged, 40 ml of the contrast medium was injected at the rate of 10 ml per second. Twelve films were exposed per second and 3 films were taken one every other second.

After portography, the catheter was withdrawn to a liver parenchymal portion, 2-3 cm from the liver capsule. There, small pieces of absorbable gelatin foam (Spongel, Yamano-uchi Pharm. Co., Tokyo) soaked in contrast medium were inserted into the punctured canal through the catheter. The catheter was withdrawn after confirmation of hemostasis.

RESULTS

Main portal vein catheterization was successful in 61 of 68 cases (90%) and unsuccessful in 7 cases (Table 2). Five cases of failure were due to poor technique in the early period of this study, 2 cases of failure were due to portal vein thrombosis confirmed by celiac arteriography and intraoperative portography. Both SPV and SMV catheterization were successful in 53 of 61 cases (87%). SPV catheterization was unsuccessful in 6 cases; 2 cases of splenic vein thrombosis, 2 cases of post splenectomy, and 2 early cases. SMV catheterization was unsuccessful in 2 early cases. Selective catheterization of the gastric coronary vein or the short gastric vein was attempted in a few cases, and the catheterization was easily performed. Main portal vein catheterization was successful after an average of 4.6 liver punctures in 61 cases and after only one puncture in 12 cases (20%). The number of puncture attempts was less than 10 in 57 of 61 cases (93%). In 4 of 7 unsuccessful cases, the average was 16.4 punctures.
T. Ito et al.

Table 2. Success rates of PTP, SPV and SMV catheterization

<table>
<thead>
<tr>
<th>Success of PTP 61/68 (90%)</th>
<th>Failure of PTP 7/68 (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPV and SMV catheterization</td>
<td></td>
</tr>
<tr>
<td>Success 53/61 (87%)</td>
<td>Failure 8/61 (13%)</td>
</tr>
<tr>
<td>SPV Failure 6</td>
<td>SMV Failure 2</td>
</tr>
<tr>
<td>Splenic vein thrombosis 2</td>
<td>Portal vein thrombosis 2</td>
</tr>
<tr>
<td>Post splenectomy 2</td>
<td>Poor technique 5</td>
</tr>
<tr>
<td>Poor technique 2</td>
<td></td>
</tr>
</tbody>
</table>

PTP; percutaneous transhepatic portal catheterization, SPV; splenic vein, SMV; superior mesenteric vein.

![Graph](image)

Fig. 2. Portal vein pressure in liver diseases. PVP; portal vein pressure, IPH; idiopathic portal hypertension, LC; liver cirrhosis, CH; chronic hepatitis, FL; fatty liver, OLD; other liver diseases, HD; hematological diseases, PS; post splenectomy.

Catheterization was abandoned when the number of punctures reached 20 times.

The main portal vein pressure was 310 ± 67 mm H₂O in idiopathic portal hypertension (IPH), 290 ± 83 in liver cirrhosis (LC), 193 ± 71 in chronic hepatitis (CH) and 166 ± 50 in fatty liver (FL) (Fig. 2). PVP was more elevated in IPH and LC than in CH and FL (P < 0.01). PVP was over 150 mm H₂O in 2 of 4 cases of fatty liver (190, 235 mm H₂O). In one case of fatty liver, hepatofugal collateral flow toward the hemiazygos vein was demonstrated by splenic venography (Fig. 3). In this case, peritoneoscopy revealed a yellowish smooth liver surface, and histology demonstrated marked fatty deposition without fibrosis or lobular distortion.

Portal vein pressure change in response to exercise was measured in 11 cases.
Fig. 3. Selective splenic venography in a case of fatty liver. Hepatofugal collateral blood flow toward hemiazygos vein is demonstrated (arrows). Portal vein pressure was 190 mm H$_2$O. PV; portal vein, SPV; splenic vein, HAV; hemiazygos vein.

Fig. 4: Portal vein pressure changes due to exercise. PVP; portal vein pressure, A; before exercise, B; after saying several words, C; after 10 coughs, D; after a forced Valsalva maneuver.

PVP rose from 205±75 to 229±70 mm H$_2$O after the patient said his name, age and address, to 267±81 after 10 coughs, and to 380±55 after a forced Valsalva maneuver (Fig. 4). PVP rose by 175 mm H$_2$O on the average compared to the pre-exercise value after forced the Valsalva maneuver (P<0.01).

DISCUSSION

PTP has been performed in many institutions since 1974 (3-66). The pro-
procedure has become an important method for the diagnosis and treatment of portal hypertension. Our success rate (90%) of PTP under fluoroscopic control was as high as those which has been reported (6, 61, 62). The success rate under fluoroscopic and ultrasonic control has been reported as 100% (63) and 96% (5). Ultrasonic guided liver puncture in conjunction with fluoroscopic control is desirable in cases of variceal bleeding or in patients with a bleeding tendency since portal vein catheterization can be achieved with fewer punctures.

In the present series, the PTP Chiba method was modified. The original Chiba method (7) is safer than other methods which do not use a probing thin needle. The Chiba method uses a thin PTC needle (0.7 mm in diameter) which is introduced into a right portal branch, and then a thicker PTP needle (0.8 mm in diameter, 30 cm in length) covered with a soft polyethylene catheter (1.45 mm in diameter) is introduced under guidance of the thin needle. The thin PTC needle allowed many liver punctures without complication. However, the soft polyethylene catheter sometimes could not be advanced into the main portal vein after removal of the stylet needle and tended to bend between the abdominal wall and the liver capsule in cases of liver cirrhosis. Therefore, in the present study, a thicker PTP needle (1.3 to 1.8 mm in diameter, 30 cm in length) sheathed with a finer teflon catheter (2.0 to 2.6 mm in diameter) was used to improve the control of the catheter. However, the teflon catheter was sometimes difficult to advance into small portal branches. In these cases, a soft thin polyethylene catheter (1.0 to 1.7 mm in diameter, 50 to 60 cm in length) was inserted through the teflon catheter. Selective catheterization of the gastric coronary vein or short gastric veins was easily performed by our method.

So-called intrahepatic parainsinusoidal portal hypertension (67) has been claimed to occur in fatty liver due to narrowed sinusoids compressed by fatty deposition. However, it has not been proven clinically. In the present series, PVP over 150 mm H₂O was demonstrated in 2 of 4 cases of fatty liver and a hepatofugal collateral to the hemiazygos vein was observed in one case that showed no lobular distortion.

Increase in portal pressure is a critical problem for patients with gastrosophageal varices. Matsushita et al. (68) measured the portal pressure at a mesenteric vein for several days after abdominal operation and noticed PVP elevation in physiological states. Marked elevation of PVP was reconfirmed after coughing and forced Valsalva maneuvers in the present study. Avoidance of maneuvers that cause marked elevation of PVP in cases of portal hypertension with severe gastrosophageal varices is recommended.

REFERENCES

2. Reynolds, T.B., Ito, S. and Iwatsuki, S.: Measurement of portal pressure and its clinical appli-
Ito et al.: Percutaneous transhepatic portal catheterization-modification

PTP in Liver Diseases

521, 1976.

52. Burcharth, F., Sorensen, T.A. and Andersen, B.: Percutaneous transhepatic portography. III. Relationships between portosystemic collaterals and portal pressure in cirrhosis. *Am. J. Roent-

