Regional difference in cyclic AMP response to adenosine of rat cerebral cortex with an iron-induced epileptic focus.

Yukio Hattori*
Kozo Inaba†
Akiyoshi Moriwaki‡
Yasuo Hori**

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
Regional difference in cyclic AMP response to adenosine of rat cerebral cortex with an iron-induced epileptic focus.*

Yukio Hattori, Kozo Inaba, Akiyoshi Moriwaki, and Yasuo Hori

Abstract

A chronic epileptic focus not resulting in generalized convulsions was induced by a microinjection of FeCl₃ solution into the left anterior cortex of rats. Cyclic AMP accumulation in response to adenosine was examined in incubated slices from the cerebral cortex of animals that showed bilateral spike and slow wave complex in an electrocorticogram (ECoG) 30 to 60 days after the microinjection. Cyclic AMP accumulation after incubation with adenosine was most marked in slices from the left anterior quadrant of the cortex including a FeCl₃-injected site. A medium response was observed in both the left posterior and the right anterior quadrants, but little or no response in the right posterior quadrant of the cortex.

KEYWORDS: rat cerebral cortex, iron-induced epileptic focus, cyclic AMP, adenosine

*PMID: 6291336 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
REGIONAL DIFFERENCE IN CYCLIC AMP RESPONSE TO ADENOSINE OF RAT CEREBRAL CORTEX WITH AN IRON-INDUCED EPILEPTIC FOCUS

Yukio HATTORI, Kozo INABA*, Akiyoshi MORIWAKI and Yasuo HORI
Department of Physiology, Okayama University Medical School, Okayama 700, Japan
Received February 18, 1982

Abstract. A chronic epileptic focus not resulting in generalized convulsions was induced by a microinjection of FeCl₃ solution into the left anterior cortex of rats. Cyclic AMP accumulation in response to adenosine was examined in incubated slices from the cerebral cortex of animals that showed bilateral spike and slow wave complex in an electrocorticogram (ECOG) 30 to 60 days after the microinjection. Cyclic AMP accumulation after incubation with adenosine was most marked in slices from the left anterior quadrant of the cortex including a FeCl₃-injected site. A medium response was observed in both the left posterior and the right anterior quadrants, but little or no response in the right posterior quadrant of the cortex.

Key words: rat cerebral cortex, iron-induced epileptic focus, cyclic AMP, adenosine.

Chronic epileptic discharges are found in the ECOG of rats and cats which have been treated with an intracortical injection of iron compounds (1, 2). Previous results showed that when slices from rat cerebral cortex with an iron-induced epileptic focus were incubated with glutamate, the levels of cyclic AMP in different cortical areas were not uniform (3). In the present study, we compared the effect of adenosine on the cyclic AMP content of slices from four cortical areas of rats with a chronic iron-induced epileptic focus, since adenosine, like glutamate, has been shown to increase the level of cyclic AMP in cerebral cortical slices of rats (4, 5).

Materials and Methods. Experimental procedures were essentially the same as described previously (3), except that 0.5 mM adenosine was the test substance added to the incubation medium instead of glutamate. A chronic epileptic focus was induced by microinjection of 5 μl of 0.1 M FeCl₃ solution into the left sensorimotor cortex of male Wistar rats employing the method of

*Present address: Department of Cell Biology, Hyogo University of Teacher Education, Yashirocho, Hyogo 673-14, Japan.
Willmore et al. (1, 2). Animals were sacrificed after confirming the appearance of epileptic discharges in ECoG. The cerebral cortex was dissected into four parts: left anterior, left posterior, right anterior, and right posterior quadrants. After incubation of slices, cyclic AMP was isolated by Dowex 50W-X8 column chromatography (6) and assayed by a protein binding method (7). The protein content of the homogenate was estimated by the method of Lowry et al. (8).

Results. In most animals, spontaneous focal spike discharges were recorded at the frontal ECoG lead 1 week after the microinjection. In some cases, epileptic activities developed into bilateral spike and slow wave complex about 3 weeks after the microinjection, and the latter pattern often lasted for more than 10 weeks after the microinjection (Fig. 1). Behavioral features of epileptic activ-

Fig. 1. ECoG of a rat with an iron-induced focus recorded 47 days after microinjection of FeCl₃ solution. FeCl₃ solution was injected into the left cortex at a point 1.5 mm rostral and 3.5 mm lateral to the bregma. Two of 4 stainless steel electrodes were located 3 mm rostral and 3 mm lateral to the bregma. The other two, 4 mm caudal and 4 mm lateral to the bregma.

<table>
<thead>
<tr>
<th>Table 1. Effect of adenosine on cyclic AMP levels of slices from four quadrants of cerebral cortex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic AMP (% of control)</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FeCl₃ solution-injected</td>
</tr>
<tr>
<td>Saline-injected</td>
</tr>
</tbody>
</table>

Animals were sacrificed 30 to 60 days after microinjection of FeCl₃ solution or saline. The cyclic AMP content of control slices incubated without adenosine was about 30 pmoles per mg protein irrespective of the cortical areas. Values represent the mean ± S.E.M. of five different experiments. *P<0.02, **P<0.01 compared with saline-injected animals (Student's t-test).
Adenosine Effect on Epileptic Cortex

Hattori et al.: Regional difference in cyclic AMP response to adenosine of
tissues were restricted to intermittent twitching of face or neck muscles. In ani-
mals which showed the bilateral spike and slow wave complex 30 to 60 days
after the microinjection, addition of adenosine to the incubation medium caused
2- to 3-fold increase in cyclic AMP levels of slices prepared from the left ante-
rior quadrant of the cortex containing the FeCl₃-injected site (Table 1). Aden-
osine was less effective in the left posterior and right anterior quadrants, and
nearly ineffective in the right posterior quadrant. Table 1 also shows that re-
regional difference in the adenosine effect was not observed in the cortical slices
from saline-injected animals.

Discussion. It has been suggested that there is some relationship between
epileptic activity and the level of cyclic nucleotides in several regions of the
brain (9). Our previous results suggest that regional change in the cyclic AMP-
generating system of the cerebral cortex was involved in the process of a cortical
ferric focus with minimal epileptic activities (3). A similar effect was shown in
the present study.

Recently, two types of adenosine receptors were reported in cultured cells
from mouse brain: an A1 receptor mediating inhibition and an A2 receptor
mediating stimulation of cyclic AMP accumulation (10, 11). An adenosine
receptor mediating inhibition of adenylate cyclase was found in rat cerebral
cortex (12). Furthermore, it was reported that pentylenetetrazol seizure resulted
in a decrease in the adenosine binding sites of the cerebellum (13). In relation
to these reports, the present results lead us to the assumption that modification
of cell membrane functions in the cerebral cortex including some change in
adenosine receptors is involved in the development of an iron-induced epileptic
focus.

REFERENCES

1. Willmore, L.J., Sypert, G.W., Munson, J.B. and Hurd, R.W.: Chronic focal epileptiform
2. Willmore, L.J., Sypert, G.W. and Munson, J.B.: Recurrent seizures induced by cortical iron
3. Hattori, Y., Inaba, K. and Hori, Y.: Effects of L-glutamate on cyclic AMP levels in slices
from different areas of rat cerebral cortex with a chronic iron-induced focus. Acta Med.
4. Rall, T.W. and Sattin, A.: Factors influencing the accumulation of cyclic AMP in brain
5. Schultz, J. and Daly, J.W.: Accumulation of cyclic adenosine 3',5'-monophosphate in cerebral
cortical slices from rat and mouse: stimulatory effect of α- and β-adrenergic agents and
6. Otten, J., Johnson, G.S. and Pastan, I.: Regulation of cell growth by cyclic adenosine
3', 5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic
adenosine 3', 5'-monophosphate levels in fibroblasts. J. Biol. Chem. 247, 7082-7087, 1972.
Y. Hattori et al.

