Rat Parathyroid Gland, with Special Reference to Its Blood Vascular Bed, Pericapillary Space and Intercellular Space

Toshihisa Tanaka*, Mari Tsubouchi†, Yutaka Tsubouchi‡

Aiji Ohtsuka**, Takuro Murakami††

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
††Okayama University,
Rat Parathyroid Gland, with Special Reference to Its Blood Vascular Bed, Pericapillary Space and Intercellular Space*

Toshihisa Tanaka, Mari Tsubouchi, Yutaka Tsubouchi, Aiji Ohtsuka, and Takuro Murakami

Abstract

The blood vascular bed, perivascular space and intercellular space of the rat parathyroid gland were studied using scanning electron microscopy of vascular casts, freeze-cracked tissue samples, and NaOH-digested tissue blocks. The findings were supplemented by transmission light and electron microscopy of iron colloid-treated or enzyme-digested tissue sections. The rat parathyroid gland contained a rich network of capillaries. These capillaries were surrounded by marked pericapillary spaces which were demarcated by basal lamina of both capillaries and parenchymal cells. The pericapillary spaces contained numerous collagen fibrils, and issued many crista-like projections which ran deep into the sheets of parenchymal cells. The intercellular spaces of parenchymal cells contained neither basal lamina nor collagen fibrils. The surfaces of the parenchymal cells showed strong negative charging, and maintained the intercellular spaces. The luminal surfaces of the capillary endothelium also showed strong negative charging, and maintained the capillary lumen.

KEYWORDS: parathyroid gland, cationic and anionic iron colloid stainings, vascular casting, freeze fracture, maceration

*PMID: 8914677 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Rat Parathyroid Gland, with Special Reference to Its Blood Vascular Bed, Pericapillary Space and Intercellular Space

Toshihisa TANAKA*, Mari TSUBOUCHI, Yutaka TSUBOUCHI, Aiji OHTSUKA and Takuro MURAKAMI

Department of Anatomy, Okayama University Medical School, Okayama 700, Japan

The blood vascular bed, perivascular space and intercellular space of the rat parathyroid gland were studied using scanning electron microscopy of vascular casts, freeze-cracked tissue samples, and NaOH-digested tissue blocks. The findings were supplemented by transmission light and electron microscopy of iron colloid-treated or enzyme-digested tissue sections. The rat parathyroid gland contained a rich network of capillaries. These capillaries were surrounded by marked pericapillary spaces which were demarcated by basal lamina of both capillaries and parenchymal cells. The pericapillary spaces contained numerous collagen fibrils, and issued many crista-like projections which ran deep into the sheets of parenchymal cells. The intercellular spaces of parenchymal cells contained neither basal lamina nor collagen fibrils. The surfaces of the parenchymal cells showed strong negative charging, and maintained the intercellular spaces. The luminal surfaces of the capillary endothelium also showed strong negative charging, and maintained the capillary lumen.

Key words: parathyroid gland, cationic and anionic iron colloid stainings, vascular casting, freeze fracture, maceration

The parathyroid gland is rich in capillaries (1-4). They were three-dimensionally visualized utilizing our previous scanning electron microscopy of vascular casts in the rat (5). Our recent scanning electron microscopy of vascular casts combined with light and electron microscopy of tissue sections indicated that the parathyroid capillaries are provided with marked tissue spaces (6). The present study reinvestigates those hitherto poorly understood structures in the rat parathyroid gland by scanning electron microscopy of vascular casts, freeze-cracked tissue samples and NaOH-macerated tissue blocks and by transmission light and electron microscopy of iron colloid-treated or enzyme-digested tissue sections. Some findings of intercellular spaces will also be included.

Materials and Methods

Adult male Wistar rats weighing 250-300g were used. They were anesthetized with ethyl ether.

Light Microscopy

The anesthetized animals were perfused through the ascending aorta with Ringer's solution and with 2.5% glutaraldehyde or 4% paraformaldehyde in 0.1M cacodylate buffer (pH 7.2). The parathyroid glands were then isolated together with some thyroid tissue. The isolated glands were immersed for 6h or longer in the same fixative, dehydrated in paraffin, and cut into 10-15-μm-thick sections. The sections thus prepared were deparaffinized and treated as follows.

Iron colloid stainings. The sections from the glutaraldehyde-fixed specimens were incubated in fine cationic iron colloid with pH values of 1.0-1.5, 4.0-4.5 or 7.2-7.4 (7) or anionic iron colloid with pH values of 7.2-7.4 (8), treated for Prussian blue reaction, and counterstained with nuclear fast red.

Some sections were stained with hematoxylin and eosin.

Methylation and saponification. Some sections from the glutaraldehyde-fixed specimens were methylated with 0.05N HCl in methanol at 58-60°C (9), and saponified with 0.1N KOH in 70% ethanol at room temperature (10). In each step, the sections were stained with cationic iron colloid at pH values of 1.0-1.5 or 7.2-7.4 and treated for Prussian blue reaction (7).

* To whom correspondence should be addressed.
Enzyme digestions. The sections from the paraformaldehyde-fixed specimens were digested with sodium dodecyl sulfate (11) or hyaluronidase (12). The sections were then incubated in cationic iron colloid at pH values of 1.0-1.5 or 7.2-7.4 and treated for Prussian blue reaction (7).

Transmission Electron Microscopy
The parathyroid glands were isolated, without any perfusion, from anesthetized rats and cut into blocks (0.3 × 0.3 × 0.3 mm). They were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) at 4°C for 6h, postfixed with 1% osmium acid in the same buffer at 4°C for 3h, embedded in epoxy resin and cut into ultrathin sections. These sections were stained with uranyl acetate and lead citrate and observed with a transmission electron microscope (Hitachi, H-700) using an acceleration voltage of 100 kV.

Small blocks were prepared from the Ringer-perfused and glutaraldehyde-fixed parathyroid glands. These blocks were intensively stained with osmic acid or treated with 1% tannic acid for 6h and 1% osmic acid for 3h (13), embedded in epoxy resin and cut into ultrathin sections for transmission electron microscopy without any additional metal coating.

In some cases, the parathyroid glands were isolated after glutaraldehyde-perfusion fixation. These glands were cut into small blocks (see above), refixed with glutaraldehyde, embedded in LR White resin and cut into ultrathin sections. These sections were treated with cationic iron colloid at pH values of 1.0-1.5 or 4.0-4.5, exposed to osmium vapor and observed with the H-700 transmission electron microscope at 100 kV acceleration voltage (14).

Scanning Electron Microscopy
Vascular casts. Some of the anesthetized animals were perfused through the ascending aorta with Ringer’s solution after ligation of thoracic aorta. They were then infused with laboratory-prepared low viscosity methacrylate casting medium (15, 16) or commercially available one (Mercor, Oken Shoji) until the superior vena cava was filled with the casting medium. These resin-infused animals were corroded in a NaOH solution, washed in running tap water, and air-dried (15). The blood vascular casts thus prepared were dissected, and the blood vascular beds of the parathyroid glands were isolated together with those of the thyroid glands. The isolated casts were exposed to osmium vapor (16), sputter-coated with gold and observed with a scanning electron microscope at an acceleration voltage of 5 kV.

Freeze-cracked tissue samples. Ringer-perfused and glutaraldehyde-fixed parathyroid glands (see above) were conductively stained with 1% tannic acid and 1% osmic acid (18), freeze-fractured in liquid nitrogen (19), critical point-dried, sputter-coated with gold and scanned at an acceleration voltage of 25 kV.

Macerated tissue samples. After immersion fixation with glutaraldehyde (see above), the parathyroid glands were macerated by a modified NaOH cell-digestion method (19). Briefly, the Ringer-perfused and glutaraldehyde-fixed glands were immersed in a 2N NaOH aqueous solution at 23°C for 3 days and washed in distilled water at 23°C for 3 days. They were conductively stained with tannin-osmium (17), freeze-cracked in liquid nitrogen (18), and observed at an acceleration voltage of 25 kV.

Results
Rats possess one pair of parathyroid glands. Each gland is located at the latero-cranial aspect of the thyroid gland.

Light Microscopy
Iron colloid stainings. Light microscopy of hematoxylin/eosin, cationic iron colloid/nuclear fast red or anionic iron colloid/nuclear fast red-stained sections revealed that the rat parathyroid gland is separated from the thyroid gland by a thick connective tissue capsule (Figs. 1, 2). This connective tissue capsule extended into the parathyroid gland and formed septa which conveyed blood vessels and nerves into the parathyroid gland (Figs. 1, 2). The septa contained some mast cells which were both reactive to cationic and anionic iron colloids. Few lymphatic vessels were noted in the gland.

The parenchyma of the parathyroid gland consisted of densely packed secretory (parenchymal) cells forming the sheets (Figs. 1, 2). The cytoplasm of these cells was well reactive to anionic iron colloid with pH values of 7.0-7.4 (Figs. 1, 1 Inset); it was not stained with cationic iron colloid at any pH levels of 1.5-7.4 (Figs. 2, 2 Inset, 3). Thus, no dark cells were identified in the iron colloid stainings and also in the hematoxylin/eosin staining.

Marked intercellular tissue spaces were noted between or among the parenchymal cells, especially in the specimens prepared by perfusion fixation (Figs. 1-3). The surfaces of parenchymal cells (apical and lateral domains) enfacing these intercellular tissue spaces were stained with cationic iron colloid at pH values of 7.2-7.4 (Fig. 2 Inset) and 4.0-4.5; they were not reactive to this colloid at pH
values of 1.0–1.5 (Fig. 3). The surfaces of parenchymal cells (basal domains) en-facing the pericapillary spaces (see below) were not reactive to cationic iron colloid at any pH values of 1.0–1.5, 4.0–4.5 and 7.2–7.4.

The parathyroid gland was rich in blood capillaries. The capillaries ran within the sheets of parenchymal cells (Figs. 1–3). These capillaries were bordered by marked pericapillary tissue spaces, which issued some crista-like projections running deep into the parenchymal sheets (Fig. 1 Inset). The luminal surface of these capillaries was reactive to cationic iron colloid at pH values of 1.0–1.5 (Fig. 3) as well as 7.2–7.4 (Fig. 2).

Connective tissue elements or collagen fibrils in the pericapillary tissue spaces were reactive to cationic iron colloid at pH values of 7.2–7.4 (Fig. 2 Inset), but not reactive at pH values of 1.0–1.5 and 4.0–4.5 (Fig. 3).
Collagen fibrils in the septa and other structures, including the parathyroid capsule, were also reactive to cationic iron colloid at pH value of 7.2–7.4.

Methylation, saponification and enzyme digestions. The surface negative charging of the parenchymal cells was eliminated by methylation, and reversed by saponification, whereas it was not eliminated by the hyaluronidase and sialidase digestions.

The negative charging of the luminal surface of the capillary endothelium was eliminated by methylation, and reversed by saponification. This charging was eliminated by sialidase digestion (Fig. 3 Lower inset), and not erased by hyaluronidase digestion.

The negative charging of the collagen fibrils was eliminated by methylation, and reversed by saponification, whereas it was not eliminated by hyaluronidase and sialidase digestions.

Transmission Electron Microscopy

Transmission electron microscopy of non-perfused specimens showed that the capillary endothelium in the parathyroid glands was highly fenestrated, and surrounded by a well defined basal lamina (parenchymal lamina) (Fig. 4). The surfaces of parenchymal cells facing the capillaries were also provided with a well defined basal lamina (endothelial lamina) (Fig. 4). The crista-like projections of the pericapillary spaces were lined by the parenchymal basal lamina (Fig. 4 Inset). Thus, the pericapillary spaces were clearly demarcated by the parenchymal and endothelial basal laminae.

The pericapillary spaces contained many collagen fibrils, some fibroblasts and a few mast cells (Fig. 4 Inset). Few pericytes were identifiable around the capillaries. Unmyelinated nerves or their terminals containing cored or non-cored vesicles were occasionally noted in the pericapillary spaces.

The parenchymal cell surfaces en-facing the intercellular tissue spaces were interdigitated (Fig. 4), and connected to each other by scattered desmosomes (Fig. 4 Inset). The intercellular tissue spaces thus possessed neither basal lamina nor collagen fibrils, or were empty without any tissue elements.
Perfusion-fixation caused a marked widening of the intercellular tissue spaces (Fig. 5), leaving desmosomes connecting the cells (Fig. 5 Upper inset).

Transmission electron microscopy of LR White resin-embedded and cationic iron colloid (pH 1.0–1.5)-treated specimens showed that the colloidal particles were preferentially deposited on the luminal surfaces of the capillaries, especially on the proper plasmalemma; few colloidal particles adhered to fenestrae (Fig. 5 Lower inset). In the staining at the pH level of 4.0–4.5, many colloidal parti-
Fig. 6 Scanning electron micrograph of replicated blood vascular bed of the rat parathyroid gland. The parathyroid blood vascular bed (P) receives afferent vessels (a) from the superior thyroid arteries (A) and emits efferent vessels (v) draining into the superior thyroid veins (V). F, capillary networks of thyroid follicles; T, capillary beds of fatty tissues. × 120.
cles were also observed on the surfaces of parathyroid cells (apical and lateral domains) enfacing intercellular tissue spaces (Fig. 5 Upper inset).

Scanning Electron Microscopy

Vascular casts. Sufficient perfusion of low viscosity methacrylate medium through the ascending aorta allowed a good casting of the parathyroid (Fig. 6). Few leakages of the perfused medium were noted.

The capillary bed of each parathyroid gland received four to five afferent vessels from the superior thyroid artery. These afferent vessels branched variously in the superficial and deep layers of the gland and formed a network of freely anastomosing capillaries (Fig. 6). This network converged into venules at various levels in the superficial and deep layers of the gland and finally converged into several emissary veins that were drained, via parathyroid efferent vessels, into the superior thyroid veins (Fig. 6).

The capillary network of the parathyroid gland was independent from that of the thyroid gland. The capillaries in the former gland were thinner than those in the latter. No capillary connection was noted between the capillary plexuses of the parathyroid and thyroid glands.

Freeze-fractured tissues. Freeze-fracture confirmed that the parenchymal cells were arranged in sheets, and that they usually have direct contact with pericapillary spaces (Fig. 7). It also confirmed that the latter spaces contained numerous collagen fibrils (Fig. 7).
Macerated tissues. Digestion with NaOH removed cellular components, leaving only collagen fibrils (Fig. 8). The collagen fibrils thus exposed were 20–100 nm in diameter. The collagen fibrils in the septa were interlaced in a complicated fashion (Fig. 8 Inset). The fibrils in the pericapillary spaces formed a thin network, in which some fibrils ran along the long axis of the capillary, whereas others ran obliquely or circumferentially around the capillary (Fig. 8).

Discussion

The parenchymal cells in the parathyroid gland produce the parathyroid hormone (21, 22). These cells are usually classified at the light microscopic and also electron microscopic levels into dark (principal) and light (oxyphilic) cells (22–28). Moreira et al. studied newborn, young, adult and senile rats, and described that the dark cells were more frequently observed as an active form in newborn and young animals, while light ones were more frequently noted as a less active type in the adult and senile animals (29). This view has been widely accepted by many authors (30–31), though some authors contend that such differences in cytoplasmic density are due to the artifacts produced in the process of tissue preparation, especially poor fixation (33).

The present study proves that each parenchymal cell in the rat parathyroid gland is similarly reactive to anionic colloid, indicating that no cell is classified into dark and light cells or into principal and oxyphil cells with respect to charging.

The present study, together with our previous scanning observations of cast samples (5, 6), confirms that the rat parathyroid gland contains a rich capillary network. This finding coincides with those obtained in man, monkey, dog, and other mammals by light microscopy of India ink-injected specimens (1–3).

The present study confirms that the capillary network of the rat parathyroid gland is an independent unit which is isolated from the capillaryplexuses of the thyroid follicles. It also indicates that the capillary network of the parathyroid gland consists of freely anastomosing capil-
laries, allowing homogeneous blood flow through the gland. Landau and Morgan noted that human parathyroid capillaries are sinusoidal and as wide as the splenic sinuses (3, 4). In the rat parathyroid, all capillaries are thin. Even in our previous scanning studies of the rat, no sinusoidal capillaries were replicated (5, 6). Isono et al. observed the vascular casts with a scanning electron microscope, and described many capillary connections between the parathyroid and thyroid glands of the hamster (34, 35). Such parathyroid-thyroid capillary connections were rare in the rat (5, 6).

The present study reveals that the parenchymal capillaries of the rat parathyroid gland are provided with marked pericapillary tissue spaces-demarcated by basal laminae of capillaries and the parenchymal cells. We consider that these spaces are functional structures homogeneously to supply the parenchymal cells. The crista-like projections of the pericapillary spaces may be special structures to nourish the parenchymal cells located far from the capillaries. Krsitić observed freeze-fractured rat parathyroid glands with a scanning electron microscope, and reported that the pericapillary spaces were almost free of collagen fibrils (35). However, our present and previous scanning data from the freeze-cracked tissues shows that the pericapillary spaces contain many collagen fibrils (6).

The present study revealed that the arterial perfusion conspicuously widened the intercellular tissue spaces of the parenchymal cells, and that the desmosomes connecting the cells are not detached by this arterial perfusion. This fact proves that the desmosomes are fundamental to maintaining the sheets or continuities of parenchymal cells. Wild and Scharer cytochemically demonstrated in bovine parathyroid gland that exoctic release of parathyroid hormone takes place at the apicolateral domain of the parenchymal cells, the site of cells opposing blood capillaries (36). Isono et al. and Setoguchi et al. electron-microscopically showed in the hen and rat parathyroid glands some secretory granules that were in the exocytic passage at the apicalateral surfaces of parenchymal cells (34, 37). Parathyroid hormone thus released may flow into the intercellular tissue spaces and then into pericapillary spaces.

The present study shows that the apicolateral surfaces of the parenchymal cells enfacing the intercellular tissue spaces is negatively charged. This negative charging, probably preventing adhesion of parenchymal cell or maintaining the intercellular space, must derive from some carboxylate groups which are reversed by saponification after methylation, and not digested with hyaluronidase and sialidase. The present study additionally indicates that similar negative-charged carboxylate groups cover the collagen fibrils in the pericapillary spaces, septa and parathyroid capsule.

The present study further shows that the luminal surface, especially its proper plasmalemma, of the capillary endothelium is strongly negative-charged, which is eliminated by sialidase digestion. We believe that this endothelial negative charging prevents adhesion of capillary endothelium and maintains the capillary lumen. It has been widely confirmed in the pancreas, intestinal mucosa, kidney and other organs, including the brain, that the luminal surfaces of the capillaries are coated with either sulfated proteoglycans or saiclic acid, and intensely negatively charged (38-42). These anionic sites have been regarded as the charge-barriers for transmural passage of molecular substances through the capillary walls (38-42). We recently showed that the peritoneal cavity is maintained by negatively charged sialomucin on the peritoneal free surface (11).

References

11. Ohtsuka A and Murakami T: Anionic sites on the free surface of the

