Increased endothelial and epidermal thrombomodulin expression and plasma thrombomodulin level in progressive systemic sclerosis.

Hitoshi Mizutani*, Tatsuya Hayashi†, Nobuhiro Nouchi‡, Shin Inachi**, Koji Suzuki††, Masayuki Shimizu‡‡

*Mie University Faculty of Medicine, †Mie University Faculty of Medicine, ‡Mie University Faculty of Medicine, **Mie University Faculty of Medicine, ††Mie University Faculty of Medicine, ‡‡Mie University Faculty of Medicine,
Increased endothelial and epidermal thrombomodulin expression and plasma thrombomodulin level in progressive systemic sclerosis.*

Hitoshi Mizutani, Tatsuya Hayashi, Nobuhiro Nouchi, Shin Inachi, Koji Suzuki, and Masayuki Shimizu

Abstract

To clarify the relation between systemic and cutaneous vascular endothelial injury in progressive systemic sclerosis (PSS), we examined thrombomodulin (TM) expression in PSS skin lesions immuno-histopathologically and compared it with plasma soluble TM levels measured by specific enzyme-linked immunosorbent assay. The plasma soluble TM level in PSS patients was significantly higher than that of normal controls and was as high as the levels of SLE patients. In relation to disease activities, the plasma TM levels of sclerotic phase PSS patients were significantly higher than that of atrophic phase PSS patients. The plasma samples with anti-Scl-70 antibody showed a high TM level than samples with anti-centromere antibody or anti-RNP antibody. Barnett’s types or systemic corticosteroid treatment did not affect the TM level. Histopathologically, the dermal endothelial TM expression significantly increased in the sclerotic skin and moderately increased in the non-sclerotic skin of PSS compared with that of normal control skin. In addition, immunoreactive TM expression in the epidermis also increased in PSS. Disease activity-dependent elevation of plasma TM levels and immuno-histopathological expression of TM suggested generalized endothelial and epidermal cell involvement in PSS, and compensation in part by overproduction of TM by endothelial cells.

KEYWORDS: thrombomodulin, scleroderma, skin, endothelial cells, keratinocyte

*PMID: 8985465 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Increased Endothelial and Epidermal Thrombomodulin Expression and Plasma Thrombomodulin Level in Progressive Systemic Sclerosis

Hitoshi Mizutani*, Tatsuya Hayashi†, Nobuhiro Nouchi, Shin Inachi, Koji Suzuki‡ and Masayuki Shimizu
Department of Dermatology and "Department of Molecular Biology on Genetic Disease, Mie University Faculty of Medicine, Mie 514, Japan

To clarify the relation between systemic and cutaneous vascular endothelial injury in progressive systemic sclerosis (PSS), we examined thrombomodulin (TM) expression in PSS skin lesions immuno-histopathologically and compared it with plasma soluble TM levels measured by specific enzyme-linked immunosorbent assay. The plasma soluble TM level in PSS patients was significantly higher than that of normal controls and was as high as the levels of SLE patients. In relation to disease activities, the plasma TM levels of sclerotic phase PSS patients were significantly higher than that of atrophic phase PSS patients. The plasma samples with anti-Scl-70 antibody showed a higher TM level than samples with anti-centromere antibody or anti-RNP antibody. Barnett’s types or systemic corticosteroid treatment did not affect the TM level. Histopathologically, the dermal endothelial TM expression significantly increased in the sclerotic skin and moderately increased in the non-sclerotic skin of PSS compared with that of normal control skin. In addition, immunoreactive TM expression in the epidermis also increased in PSS. Disease activity-dependent elevation of plasma TM levels and immuno-histopathological expression of TM suggested generalized endothelial and epidermal cell involvement in PSS, and compensation in part by overproduction of TM by endothelial cells.

Key words: thrombomodulin, scleroderma, skin, endothelial cells, keratinocyte

Thrombomodulin (TM) is a membrane protein expressed on the surface of endothelial cells which expresses anticoagulation activity via activation of protein C after binding to thrombin (1, 2). Recently, a soluble form of TM was recognized in vasculitic disease patients’ plasma (pTM) and some relation between the pTM level and disease activity has been reported in systemic lupus erythematosus (SLE) (3-5). However, the function, precise mechanism of elevated pTM and the source of pTM are still unclear. We focused on progressive systemic sclerosis (PSS) as a collagen disease with vascular involvement, including inflammation followed by sclerotic fibrosis, vascular spasm and long lasting vasomotor disorders. We measured the pTM level in PSS patients and compared immuno-histopathological TM expression in the sclerotic skin.

Patients and Methods

Patients. Thirty-seven PSS patients aged 27 to 72 years old (mean 49.9) and 21 SLE patients aged 25 to 65 years old (mean 45.3) who met the American Rheumatism Association criteria. PSS patients were subdivided according to their autoantibodies: anti-Scl-70 antibody (Scl, n = 20), anti-RNP antibody (RNP, n = 6), anti-centromere antibody (ACA, n = 6) and other autoantibody groups (other, n = 5). Barnett’s types (6), and groups with or without systemic corticosteroid treatment. PSS patients were also divided into sclerotic phase (n = 22) and atrophic phase groups (n = 15). Normal control values were obtained from 24 age-matched volunteers. All the patients and controls were female.

Plasma sample preparation. Blood samples were obtained from brachial vein puncture with 10% volume of 10 mM sodium citrate. Plasma was immediately separated by centrifugation and stored at -70°C before preparation.

*To whom correspondence should be addressed.
Results

Plasma TM concentration. The plasma TM level in PSS patients (1.71 ± 0.07 ng/ml, mean ± SE, P < 0.01) was significantly higher than that of normal controls (1.38 ± 0.12 ng/ml). This PSS TM level was as high as the plasma TM level in SLE patients (1.72 ± 0.12 ng/ml, P < 0.05) measured as positive control (Fig. 1).

The plasma TM level from sclerotic phase patients (n = 22) was 1.97 ± 0.09 ng/ml, which was significantly higher than that of atrophic phase patients (n = 15, 1.49 ± 0.07 ng/ml, P < 0.01, Fig. 1).

Plasma TM level in the Scl, ACA, RNP and other groups were 1.79 ± 0.10, 1.59 ± 0.25, 1.33 ± 0.07, 1.80 ± 0.10 ng/ml, respectively (Fig. 2). The Scl and other groups TM levels were significantly higher than that of the normal controls (P < 0.01).

The TM level of corticosteroid-treated patients (1.66 ± 0.09 ng/ml) was slightly lower than that of the non-corticosteroid treated group (1.74 ± 0.14 ng/ml). There was no difference in the TM levels among Barnett’s three types (type 1: 1.75 ± 0.14, type 2: 1.66 ± 0.13, type 3: 1.66 ± 0.10 ng/ml).

Immunohistochemical expression of TM in the skin. Normal human dermal capillaries, venule, lymph vessels and small arteries showed moderately but
clearly positive staining (Fig. 3a). Epidermal keratinocytes were also stained positively from suprabasal to subcorneal layer cells. We could not find positive staining at the basal layer cells in ten normal skin samples from various regions including the upper arm, face, trunk and forearm. The immunoreactive TM distributed around the cell membrane and showed a basket-like pattern. No samples showed cytoplasmic staining pattern. These staining patterns did not differ between samples stained by MFTM-5 and MFTM-6. Since the background staining was slightly low in MFTM-5 samples, we used MFTM-5.

The clinically and histopathologically sclerotic forearm skin of PSS patients showed marked greater expression of TM on the dermal capillaries, veins and arterioles compared with normal control skin obtained from the corresponding part of the body (Fig. 3b). The epidermis also showed a highly dense staining pattern. Different from normal skin, we found intense immunoreactive TM distribution through basal layer cells to subcorneal layer cells. A positive basal cell pattern was observed in all of

![Image](image-url)

**Fig. 2** The plasma TM level of Scl, ACA RNP and other antinuclear antibody groups were 1.79 ± 0.1, 1.59 ± 0.25, 1.33 ± 0.07 and 1.80 ± 0.1, respectively. In Scl and other groups TM levels were significantly higher than those of normal control (*P < 0.01). TM: See Fig. 1.

![Image](image-url)

**Fig. 3** Immunohistochemical expression of thrombomodulin in normal and PSS skin. a: The dermal vessels of normal skin showed moderate staining for MFTM-5 monoclonal anti-TM antibody. Epidermis was also stained at Malphigian layer cells, but not at basal cells (arrow) (50 ×). b: The sclerotic forearm skin in PSS showed significantly stronger staining for TM on the dermal vascular endothelial cells. Epidermis also showed more intensive staining than normal epidermis. Different from normal basal cells, the sclerotic skin basal cells showed intensive immunoreactive TM expression (arrow), as in the upper epidermis (50 ×). c: Biopsy specimen from non-sclerotic upper arm skin from PSS also shows intense immunoreactive TM expression on the dermal vasculature close to the sclerotic skin lesions. Basal layer cells also expressed TM at a level similar to the sclerotic skin basal cells (50 ×). TM: See Fig. 1.
the PSS samples examined. In contrast to the clear membrane distribution of TM in normal skin, the augmented epidermal TM staining of PSS skin showed thick and diffuse staining around the cell membrane. Three samples from normal looking, non-sclerotic upper arm skin were examined. While these samples did not show sclerotic changes histologically, the dermal and epidermal immunoreactivity to anti-TM antibodies were close to the sclerotic skin lesions (Fig. 3c).

Discussion

In contrast to the well known anti-coagulation function of the endothelial surface TM, little is known about the function of the plasma TM. Elevation of plasma TM has been reported in vasculitic diseases (11), disseminated intravascular coagulation (12) and SLE (5, 13, 14). Since the extracellular domain of endothelial TM is susceptible to enzymatic degradation, including trypsin (15), it has been speculated that TM is shed from endothelial cell membranes by enzymes from infiltrated leukocytes. The smaller molecular weight and much lower cofactor activity of plasma TM compared with membrane-bound TM also support the idea that TM is shed endothelial TM. Therefore, TM has been regarded as a marker for endothelial damage (11).

Disease activity elevation of plasma and serum TM levels were reported in SLE. Because of the milder clinical course and less significant histopathological vasculitic changes, there are few reports on the TM level in PSS (16). However, the present results showed a significant increase of sTM in the sclerotic phase of PSS but not in the atrophic phase. In addition, the TM level was significantly higher in the Scl group, and moderately high in the ACA group but not in the RNP groups. Anti-Scl-70 antibody is a marker for severe PSS (17), and Scl groups show progressive, widespread skin involvement and lung fibrosis. ACA and RNP manifest a milder clinical course. Thus, it is likely that the PSS TM level reflects the disease activity of PSS as it does in SLE. Vasculitis of PSS is very limited morphologically. However, vasomotor disturbances, Raynaud's phenomenon, thrombosis and ischemic vascular lesions involve PSS systematically. Since ischemia is a potent inducer of TM (11), elevation of TM in PSS can be attributed to vascular disturbances.

Inflammatory cytokines such as IL-1 and TNF-alpha down-regulate endothelial cell TM expression in vitro (18). The high-TM systemic disease is equal to the inflammatory cytokine productive disease (19–22). Scleroderma mononuclear cells produce inflammatory cytokines, causing the plasma cytokine level to become elevated (23, 24). The in vivo TM regulation system is still obscure. Endothelial TM may be down-regulated once by inflammatory cytokines. In vivo, different from in vitro, there must be some feedback system which protects endothelial cells from over coagulation due to TM depletion. It is possible to hypothesize that over-expression of endothelial TM in PSS antagonized autoimmune injury.

Another novel finding was enhanced epidermal TM expression through the basal layer to the Malpighian layer. In the normal condition, epidermal basal cells do not express TM (10, 25). Keratinocyte TM expression can be augmented by differentiation with elevated levels of calcium (10, 26). Epidermal damage in PSS has not been studied as intensively as the epidermal liquefaction degeneration in SLE. However, the sclerotic skin lesion with hyperpigmentation and depigmentation shows keratin-positive amyloid deposition (27), which strongly suggests persistent basal cell degeneration in PSS. The immunological attack against basal keratinocytes may induce cellular damage with calcium flux. Thus, PSS basal cells showed a phenotypic alteration mimicking differentiated keratinocytes with TM expression.

Epidermal TM is a full-sized and functional membrane-bound form (10), which can be cleaved enzymatically into soluble form (data not shown). The contribution of epidermal TM to the elevation of plasma TM in PSS can not be eliminated. However, the epidermis does not come into direct contact with the blood, but endothelial cells do. It is likely that the shed endothelial cell TM is a major source of plasma TM and it has been compensated for overproduction. Histological endothelial TM expression is more extensive in the active sclerotic skin but less significant in non-sclerotic upper arm skin. The plasma TM level was also elevated in the sclerotic phase PSS and progressive anti-Scl-70 antibody-positive cases. Thus, the plasma TM level appears to be related to tissue TM expression.

Plasma TM has been regarded as an indicator of endothelial cell damage resulting from vasculitis. The present data imply an active compensation mechanism of endothelial cells, and its contribution to plasma TM elevation.

Acknowledgments. This work was supported in part by a grant from the Ministry of Education and the Ministry of Health and Welfare of Japan.
Mizutani et al.: Increased endothelial and epidermal thrombomodulin

References

15. Kurowsawa S, Galvin JB, Esmon NL and Esmon CT: Proteolytic forma-