Pharmacokinetic Evaluation of Omeprazole Suspension Following Oral Administration in Rats: Effect of Neutralization of Gastric Acid

Kazuhide Watanabe* Naoyuki Matsuka† Katushi Furuno‡
Kohei Eto** Hiromu Kawasaki†† Yutaka Gomita‡‡

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
††Okayama University, kawasaki@pheasant.pharm.okayama-u.ac.jp
‡‡Okayama University,
Pharmacokinetic Evaluation of Omeprazole Suspension Following Oral Administration in Rats: Effect of Neutralization of Gastric Acid*

Kazuhide Watanabe, Naoyuki Matsuka, Katushi Furuno, Kohei Eto, Hiromu Kawasaki, and Yutaka Gomita

Abstract

In order to evaluate a clinical use of omeprazole suspension, we examined the pharmacokinetics of omeprazole after oral administration in rats. Although the administration of omeprazole suspension buffered by NaHCO3 solution did not produce a significant increase in the area under the concentration-time curve (AUC) value compared with non-buffered group, the administration of NaHCO3 buffer immediately after dosing of omeprazole suspension buffered by NaHCO3 caused a significant increase in the AUC value. These results suggest that the NaHCO3 treatment following the administration of omeprazole buffered suspension effectively decreased the degradation of the compound by gastric acid. Therefore, the successive administration of NaHCO3 solution after the omeprazole dosing seems to be a simple and useful method for the administration to patients who cannot receive tablets.

KEYWORDS: omeprazole, suspension, pharmacokinetics, rats

*PMID: 8874584 [PubMed - indexed for MEDLINE]
Copyright ©OKAYAMA UNIVERSITY MEDICAL SCHOOL
Brief Note

Pharmacokinetic Evaluation of Omeprazole Suspension Following Oral Administration in Rats: Effect of Neutralization of Gastric Acid

Kazuhide Watanabe, Naoyuki Matsuka, Katsushi Furuno, Kohei Eto, Hiromu Kawasaki and Yutaka Gomita

Department of Hospital Pharmacy, Okayama University Medical School and 2Okayama University Dental School, Okayama 700, Japan

In order to evaluate a clinical use of omeprazole suspension, we examined the pharmacokinetics of omeprazole after oral administration in rats. Although the administration of omeprazole suspension buffered by NaHCO₃ solution did not produce a significant increase in the area under the concentration-time curve (AUC) value compared with non-buffered group, the administration of NaHCO₃ buffer immediately after dosing of omeprazole suspension buffered by NaHCO₃ caused a significant increase in the AUC value. These results suggest that the NaHCO₃ treatment following the administration of omeprazole buffered suspension effectively decreased the degradation of the compound by gastric acid. Therefore, the successive administration of NaHCO₃ solution after the omeprazole dosing seems to be a simple and useful method for the administration to patients who cannot receive tablets.

Key words: omeprazole, suspension, pharmacokinetics, rats

Omeprazole is a substituted benzimidazole that effectively suppresses gastric acid secretion by inhibiting H⁺/K⁺-ATPase in the parietal cell (1, 2). This inhibition is long-lasting, although omeprazole is rapidly eliminated from plasma (3). Thus, the time-dependent antisecretory effect of omeprazole is not correlated with the plasma concentration (3). However, the area under the plasma concentration-time curve (AUC) has been reported to be correlated to the degree of the inhibition (4).

Since omeprazole is unstable in acidic conditions (5), the compound is administered orally to patients as an enteric-coated tablet that is the only formulation on the market in Japan. For patients who have difficulty with tablets, omeprazole is given in the powder or suppository form. Recently, we reported that, in rats, omeprazole administered intrarectally undergoes metabolism by gut flora, and that about 60% of the dose is degraded before absorption from the intestinal tract can occur (6). Thus, the powder or suspension form of omeprazole is preferred for these patients. However, the pharmacokinetics of the absorption of omeprazole suspension has not been systematically investigated. In the present study, therefore, we examine the pharmacokinetics of omeprazole suspension after oral administration in rats.

Male Wistar rats (Charles River Lab., Atsugi, Japan) each weighing 200–320 g were housed in the experimental animal center of Okayama University Medical School at a controlled ambient temperature of 22 ± 1°C with approximately 60% relative humidity and with a 12-h light/12-h dark cycle (lights on at 07:00). Animals were allowed free access to food and water, except for a 12-h fast before experiments. Omeprazole (donated by Fujisawa-Astra Ltd., Osaka, Japan) was suspended in 0.5% methylcellulose, and administered orally at a dose of 20 mg/kg. The animals were divided into six groups as follows: (a) non-buffered group receiving omeprazole suspension which was not buffered with NaHCO₃; (b) 0.2% NaHCO₃ group receiving omeprazole suspension...
Table 1 Method for oral administration of omeprazole suspension in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Omeprazole suspensiona</th>
<th>pH Adjustmentb</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-buffered</td>
<td>Not contained</td>
<td>Not adjusted</td>
<td>-</td>
</tr>
<tr>
<td>0.2% NaHCO$_3$</td>
<td>0.2% NaHCO$_3$</td>
<td>pH 9</td>
<td>Oral administration of H$_2$O (3ml/kg) immediately after omeprazole dosing</td>
</tr>
<tr>
<td>2.5% NaHCO$_3$</td>
<td>2.5% NaHCO$_3$</td>
<td>pH 9</td>
<td>Oral administration of 2.5% NaHCO$_3$ (3ml/kg) 5min before omeprazole dosing</td>
</tr>
<tr>
<td>H$_2$O post-dosed</td>
<td>2.5% NaHCO$_3$</td>
<td>pH 9</td>
<td>Oral administration of 2.5% NaHCO$_3$ (3ml/kg) immediately after omeprazole dosing</td>
</tr>
<tr>
<td>NaHCO$_3$ pre-dosed</td>
<td>2.5% NaHCO$_3$</td>
<td>pH 9</td>
<td></td>
</tr>
<tr>
<td>NaHCO$_3$ post-dosed</td>
<td>2.5% NaHCO$_3$</td>
<td>pH 9</td>
<td></td>
</tr>
</tbody>
</table>

a: Omeprazole was suspended in 0.5% methylcellulose and administered at 20mg/kg in a volume of 1ml/kg.

b: pH of omeprazole suspension was adjusted by 1N NaOH.

Fig. 1 Time course of plasma omeprazole concentration in rats. Omeprazole suspension was administered orally at a dose of 20mg/kg. Each point indicates the mean ± SEM. A: (○), non-buffered group; (●), 0.2% NaHCO$_3$ group; (□), 2.5% NaHCO$_3$ group. B: (■), H$_2$O post-dosed group; (▲), NaHCO$_3$ pre-dosed group; (▲), NaHCO$_3$ post-dosed group.

containing 0.2% NaHCO$_3$ (pH 9); (c) 2.5% NaHCO$_3$ group receiving omeprazole suspension containing 2.5% NaHCO$_3$ (pH 9); (d) H$_2$O post-dosed group receiving H$_2$O (3ml/kg) immediately after the administration of omeprazole suspension containing 2.5% NaHCO$_3$ (pH 9); (e) NaHCO$_3$ pre-dosed group receiving 2.5% NaHCO$_3$ solution (3ml/kg) 5min before the administration of omeprazole suspension containing 2.5% NaHCO$_3$ (pH 9); (f) NaHCO$_3$ post-dosed group receiving 2.5% NaHCO$_3$ solution (3ml/kg) immediately after the administration of omeprazole suspension containing 2.5% NaHCO$_3$ (pH 9) (Table 1). At various times after the administration, blood samples of 60μl were collected from the tail vein, and the plasma concentrations of omeprazole were determined by high performance liquid chromatography, as described previously (7).

Pharmacokinetic parameters were obtained from the plasma concentration-time data of omeprazole for each animal, using a personal computer program for nonlinear least squares regression analysis (MULTI, Nankodo, Tokyo, Japan) (8). The maximum plasma concentration (C_{max}) and the time to reach the maximum concentration (T$_{\text{max}}$) were estimated from these pharmacokinetic parameters. The AUC values were calculated for 0–3h period by the trapezoidal method. The mean residence time (MRT) was calculated by the model-independent moment

http://escholarship.lib.okayama-u.ac.jp/amo/vol50/iss4/6
Table 2 Pharmacokinetic parameters of omeprazole suspension after oral administration in rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>non-buffered ((n = 5))</th>
<th>0.2% NaHCO₃ ((n = 5))</th>
<th>2.5% NaHCO₃ ((n = 5))</th>
<th>H₂O post-dosed ((n = 5))</th>
<th>NaHCO₃ pre-dosed ((n = 5))</th>
<th>NaHCO₃ post-dosed ((n = 5))</th>
</tr>
</thead>
</table>
| Cₘₐₓ (µg/ml) | 0.40 ± 0.06 | 0.42 ± 0.11 | 0.56 ± 0.10 | 0.61 ± 0.18 | 1.18 ± 0.20 | 1.53 ± 0.26
| Tₘₐₓ (h) | 0.16 ± 0.02 | 0.24 ± 0.04 | 0.19 ± 0.02 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.21 ± 0.02
| AUC (µg*h/ml) | 0.24 ± 0.02 | 0.40 ± 0.09 | 0.48 ± 0.08 | 0.46 ± 0.09 | 0.70 ± 0.09 | 0.87 ± 0.14
| MRT | 0.47 ± 0.03 | 0.75 ± 0.08 | 0.86 ± 0.10 | 0.51 ± 0.09 | 0.68 ± 0.07 | 0.52 ± 0.03 |

Omeprazole suspension was administered orally at a dose of 20mg/kg. Each value represents the mean ± SEM.

Cₘₐₓ: The maximum plasma concentration; Tₘₐₓ: The time to reach the maximum concentration; AUC: The area under the concentration-time curve; MRT: mean residence time.

* P < 0.05 vs. non-buffered group. ** P < 0.01 vs. non-buffered group. *** P < 0.05 vs. 2.5% NaHCO₃ group.

analysis using a personal computer program (9). The results were statistically evaluated by analysis of variance followed by Dunnett’s test.

Figure 1 shows the time-course of plasma omeprazole concentration after oral administration in each group. The plasma concentration of omeprazole in the non-buffered group increased rapidly, reached a maximum at about 10 min, and became undetectable by 1h after the administration. Similar rapid increases in plasma concentrations were obtained in the other groups with the maximum being reached at about 7-14 min; however, plasma concentrations were detectable for up to 2h. Table 2 summarizes the pharmacokinetic parameters of omeprazole suspension after oral administration. The AUC values in the 0.2% NaHCO₃ and 2.5% NaHCO₃ groups were higher than in the non-buffered group, but the difference was not statistically significant. The MRT values in the 0.2% NaHCO₃ and 2.5% NaHCO₃ groups were significantly higher than in the non-buffered group (P < 0.01 and P < 0.05, respectively). The H₂O post-dosed group had an AUC value similar to the 2.5% NaHCO₃ group but a significantly decreased MRT value (P < 0.05). In the NaHCO₃ pre-dosed group, Cₘₐₓ, AUC and MRT values were significantly higher than in the non-buffered group (P < 0.05), whereas Tₘₐₓ value in the NaHCO₃ pre-dosed group was significantly lower than in the 2.5% NaHCO₃ group (P < 0.05). The NaHCO₃ post-dosed group showed significant increases in Cₘₐₓ and AUC values compared with the non-buffered group (P < 0.01), H₂O post-dosed group (P < 0.01 and 0.05, respectively) and the 2.5% NaHCO₃ group (P < 0.01 and P < 0.05, respectively). The MRT value in the NaHCO₃ post-dosed group was significantly lower than in the 2.5% NaHCO₃ group (P < 0.05).

Omeprazole is a potential inhibitor of gastric acid secretion (10), and is effective for intractable peptic ulcer that fails to respond to histamine H₂ receptor antagonists (11). Recently, proton pump inhibitors (PPI) including omeprazole have been used in combination with antibiotics to try to eradicate Helicobacter pylori (12, 13), which is involved in the pathogenesis of gastritis and peptic ulcer (14). Thus, PPI will probably be used more frequently, and so it seems that an occasion increases for administrating the PPI to patients who cannot receive tablets.

In the present study, we examined the clinical use of omeprazole suspension. In the first place, the effect of NaHCO₃ buffer on the bioavailability of omeprazole suspension was investigated. The AUC values in the 0.2 and 2.5% NaHCO₃ groups were 1.7 and 2 times higher than in the non-buffered group, but the difference was not statistically significant. This suggests that the addition of NaHCO₃ did not sufficiently prevent degradation of omeprazole in the stomach. The MRT values in the NaHCO₃-buffered groups were significantly higher than in the non-buffered group. One explanation is that omeprazole in the non-buffered group was eliminated from plasma within 1h due to rapid degradation in the stomach, whereas the addition of NaHCO₃ buffer decreased degradation of omeprazole and prolonged the MRT value.

We further examined the effect of administration of NaHCO₃ buffer before or after dosing of omeprazole buffered suspension. The AUC values in the NaHCO₃ pre-dosed and NaHCO₃ post-dosed groups were 1.5 and 1.8 times higher than in the 2.5% NaHCO₃ group, respectively, while the AUC value in the H₂O post-dosed group was similar to that in the 2.5% NaHCO₃ group.
These results indicate that neutralization of gastric acid is essential for improvement of the bioavailability of omeprazole, although it is still possible that the NaHCO₃ treatment increases absorption of omeprazole from the gastrointestinal tract. It appears that the NaHCO₃ pretreatment effectively decreased the degradation of omeprazole in the stomach, although partial degradation still occurs. However, the administration of NaHCO₃ buffer after omeprazole dosing accelerates gastric transit of the compound, thereby effectively reducing the degradation by gastric acid. Thus, post-treatment with the NaHCO₃ buffer is useful when the omeprazole suspension is administered to patients who cannot receive tablets.

In conclusion, the present study showed that the administration of NaHCO₃ solution following the dosing of omeprazole in buffered suspension attenuates effectively degradation of omeprazole in the stomach and causes an increase in systemic availability of the compound. The treatment of NaHCO₃ solution after omeprazole administration is a simple and useful method for administering to patients who cannot receive tablets.

Acknowledgment. The authors thank Mr. M. Okazaki and Y. Hashimoto for their technical assistance.

References

Received February 7, 1996; accepted May 13, 1996.