Measurement of hepatic blood flow using 111In colloid.

Shuichi Sakamoto* Keisuke Hamazaki†
Hisashi Mimura‡ Kunzo Orita**

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
Measurement of hepatic blood flow using 111In colloid.*

Shuichi Sakumoto, Keisuke Hamazaki, Hisashi Mimura, and Kunzo Orita

Abstract

The reduced hepatic blood flow calculated from hepatic scintigram with 198Au colloid was elucidated as the primary responsible factor for postoperative hepatic insufficiency. However 198Au colloid is no longer in use because of the high levels of radiation. Although 99mTc-phytate behaves similarly to 198Au on imaging, there were discrepancies between the hepatic blood flow index (KL) value and the severity of cirrhosis determined by laboratory data or by histology. In the measurement of hepatic blood flow using a radioactive colloid, factors like organ distribution, stability and uniformity of the colloid particles influence the values. In the present study, a 111In colloid was prepared and administered to rats to investigate the usefulness: as much as 95.4 (0.8) [Mean (+/- SD)]% of the colloid accumulated in the liver at pH 6.8. The distribution of particle diameter was within a relatively narrow range with the peak at 0.2 to 0.4 microns. Moreover, the KL values were not affected by condition of the reticuloendothelial system. The values showed a significant correlation with the measurements of the hepatic tissue blood flow obtained by the hydrogen gas clearance method (gamma = 0.83, P < 0.001). Thus, the 111In colloid can be clinically used as a substitute for 198Au colloid in the preoperative examination for estimation of the limit of resection.

KEYWORDS: 111In colloid, hepatic functional reserve, hepatic blood flow

*PMID: 7618493 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Measurement of Hepatic Blood Flow Using 111In Colloid

Shuichi SAKUMOTO, Keisuke HAMAZAKI*, Hisashi MIMURA and Kunzo ORITA

First Department of Surgery, Okayama University Medical School, Okayama 700, Japan

The reduced hepatic blood flow calculated from hepatic scintigram with 198Au colloid was elucidated as the primary responsible factor for postoperative hepatic insufficiency. However 198Au colloid is no longer in use because of the high levels of radiation. Although 99mTc-phytate behaves similarly to 198Au on imaging, there were discrepancies between the hepatic blood flow index (K_r) value and the severity of cirrhosis determined by laboratory data or by histology. In the measurement of hepatic blood flow using a radioactive colloid, factors like organ distribution, stability and uniformity of the colloid particles influence the values. In the present study, a 111In colloid was prepared and administered to rats to investigate the usefulness: as much as 95.4 (0.8) [% Mean (± SD)] of the colloid accumulated in the liver at pH 6.8. The distribution of particle diameter was within a relatively narrow range with the peak at 0.2 to 0.4 μm. Moreover, the K_r values were not affected by condition of the reticuloendothelial system. The values showed a significant correlation with the measurements of the hepatic tissue blood flow obtained by the hydrogen gas clearance method (γ = 0.83, P < 0.001). Thus, the 111In colloid can be clinically used as a substitute for 198Au colloid in the preoperative examination for estimation of the limit of resection.

Key words: 111In colloid, hepatic functional reserve, hepatic blood flow

In Japan, more than 80% of the cases of hepatocellular carcinoma are complicated with cirrhosis, and therefore hepatic functional reserve should be estimated as accurately as possible before operation. The effective hepatic blood flow index (K_r) has been estimated by Mimura et al. (1) and Tsumura (2) using 198Au colloid, and it was reported to be useful for evaluation of the pre- and postoperative hepatic functional reserve. Because of its clinical use, the mortality due to postoperative hepatic insufficiency decreased markedly. 99mTc phytate was used because it was impossible to obtain 198Au colloid, but in many cases there were discrepancies between the results of the preoperative evaluation by 99mTc phytate and the severity of cirrhosis determined by biochemical data or histology. The index estimated by the 99mTc phytate was not as reliable as the index estimated by 198Au colloid. The reason for this may be that 99mTc phytate forms a colloid only after injection, and there are some variables in the formation of the colloid or regarding particle size.

Thus it became necessary to select a nuclide with a high accumulation in the liver and good stability. Based on the fact that In13 can be converted into In (OH)$_3$,$^{+}$, In (OH)$_2$$^{+}$, In (OH)$_3$, or In (OH)$_4$$^{-}$ depending on the pH, and that nearly 100% of the atoms are present in the colloidal state in the form of In (OH)$_3$ in the pH range of 6 to 7 while atoms in other forms account for only a small portion (3). The colloid from 111InCl$_3$ (Japan Medi-physics Co., Tokyo, Japan) was prepared and an experimental investigation was performed in rats to evaluate its clinical usefulness.

Materials and Methods

Preparation of 111In colloid. After a 111InCl$_3$ solution was mixed with 0.01 N NaOH solution, 0.1 M phosphate buffer (containing 10% mannitol as a stabilizer) of various pH was added. The solution was then rested to allow stabilization. The pH of the solution thus prepared was measured with a pH/ionmeter model 720 (Iwaki Glass, Tokyo, Japan).

The 111In colloidal solution at the dose of 185×10^4 Bq was injected in the caudal vein of five Wistar male rats.

* To whom correspondence should be addressed.
at the respective pH values (weighing 250 to 300 g) anesthetized with pentobarbital intraperitoneally. One hour after injection, the rats were killed by exsanguination, and the liver, spleen, lungs, kidneys and blood were subjected to counting with a radioisotope calibrator CRC30 (Capintec Co., NJ, USA) to estimate the accumulation in each organ. The blood weight was assumed to account for 8% of the body weight of the rats.

Nucleipore membranes (Nomura Micro Science Co., Tokyo, Japan) with pore sizes of 0.08, 0.1, 0.2, 0.4 and 0.6 μm were used for measuring the distribution of the diameter of 111In colloid particles.

Calculation of the value of hepatic blood flow index (K_I). Data were collected by a scintillation camera with a collimator for moderate energy (250 KeV) connected with an on-line minicomputer for processing of nuclear medical data (Shimazu Scintipac 1200, Shimazu Co., Tokyo, Japan). A region of interest (ROI) was fixed on the liver scintigram, the hepatic accumulation curve was drawn, and the K_I was then calculated (4). The 111In colloidal solution was injected intravenously in those five rats at an increasing dose of 50, 100, 200, 400 and 800 μCi, and the change of K_I was examined.

Activation and suppression of the reticuloendothelial system. Zymosan A (Sigma, St. Louis, MO, USA) 40 mg/kg was injected intravenously 3 days before the measurement of K_I to stimulate the reticuloendothelial function according to the method of Kawaguchi et al. (5). On the other hand, the suppression of the reticuloendothelial function was obtained by intravenous injection of 500 mg/kg of silica 2 days before the measurement of K_I according to the method of Nash et al. (6).

Measurement of hepatic blood flow with the hydrogen gas clearance method. The hepatic tissue blood flow was measured using the hydrogen gas clearance method. The hepatic tissue blood flow was calculated with the initial slope method from the clearance curves recorded with a PHG 200 (Medical System Co., Tokyo, Japan). For this, a needle-type platinum electrode was inserted into the hepatic parenchyma.

Results

Changes in hepatic accumulation with pH. The mean percentage (SD) of hepatic accumulation at pH 5.5, 6.0, 6.5, 6.8, 7.0, and 7.5 was 80.6 (2.4) %, 82.6 (2.2) %, 90.7 (1.0) %, 95.4 (0.8) %, 94.1 (0.5) %, and 87.4 (2.0) %, respectively (Fig. 1).

Distribution of the diameter of 111In colloid particles at pH 6.8. Measurement of the diameter of the particles performed by Nucleipore membranes showed that more than 90% of particles had diameters between 0.08 μm and 0.6 μm (Table 1).

Organ distribution of 111In colloid. The 111In colloid accumulated 95.4 (0.8) % in the liver, 1.1 (0.6) % in the spleen, 0.6 (0.3) % in the lungs, 0.4 (0.1) % in the kidneys and 0.9 (0.2) % in the blood. The accumulation rates are shown in Fig. 2.

Changes of the K_I according to dose. Mean (SD) K_I at a dose of 50 μCi, 100 μCi, 200 μCi, 400 μCi, 800 μCi was 881 (63), 892 (50), 885 (33), 904 (59), and uncountable, respectively. The count at 800 μCi was so high, it became impossible to measure by computer (Fig. 3).

Influence of the reticuloendothelial system on K_I. K_I values before and after stimulation with Zymosan A were 889 (62) and 877 (73), respectively. At
Table I Distribution of the diameter of 111In colloid particle at pH 6.8

<table>
<thead>
<tr>
<th>The diameter of 111In colloid particle (μm)</th>
<th>< 0.08</th>
<th>0.08 ≤ < 0.1</th>
<th>0.1 ≤ < 0.2</th>
<th>0.2 ≤ < 0.4</th>
<th>0.4 ≤ < 0.6</th>
<th>0.6 ≤</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean percent (SD)</td>
<td>5.3 (0.9)</td>
<td>6.9 (3.7)</td>
<td>13.3 (7.7)</td>
<td>63.5 (10.1)</td>
<td>7.2 (5.7)</td>
<td>3.7 (2.6)</td>
</tr>
</tbody>
</table>

Five rats were used to determine the diameter of 111In colloid particle.

Fig. 2 Organ distribution of 111In colloid examined in 5 rats. More than 95% of 111In colloid accumulated in the liver.

Fig. 3 Changes of the K_i value according to the administered dose examined in 3 rats. K_i values for each dose were similar.

Fig. 4 Influence of stimulation or suppression of the reticuloendothelial system on the K_i values. (a) K_i values before and after stimulation with Zymosan A did not change. Control rats ($n=8$); Rats treated with zymosan A ($n=6$). (b) K_i values before and after suppression with silica did not change. Control rats ($n=8$); Rats treated with silica ($n=5$).
the same time, by the hydrogen gas clearance method K_L remained unchanged before and after the stimulation with Zymosan A (Fig. 4a).

K_L values before and after suppression with silica were 889 (62) and 881 (67), respectively. At the same time, the values of hepatic tissue blood flow measured by the hydrogen gas clearance method remained unchanged before and after the suppression with silica (Fig. 4b).

Correlation between K_L and hepatic tissue blood flow measured by hydrogen gas clearance method (H_L). K_L correlated significantly ($y = 0.83$, $P < 0.001$) with the values of H_L (Fig. 5).

Discussion

198Au colloid has long been used for measurement of hepatic blood flow due to its high uniformity and specificity, and since it is not taken up by the spleen (7). However, this colloid was eventually prohibited because the radioactivity was too high.

198Au was replaced by 99mTc-Sn colloid and 99mTc phytate, which are now frequently used for hepatic scintigraphy. Although 99mTc-Sn colloid is presented as colloidal form at the time of administration, it also tends to concentrate in the spleen because of the large diameter of the particles, and it accumulates gradually in the lungs as aggregation progresses. Thus the particle diameter and the stability of 99mTc-Sn colloid are not suitable for the estimation of hepatic blood flow.

Additionally, it has been reported that K_L values obtained with 99mTc-Sn colloid did not correlate well with the corresponding values of 198Au colloid (8).

In contrast, 99mTc phytate hardly concentrates in the spleen, and gives an image similar to that of 198Au colloid. However, we found cases where the values were not reliable to examine the hepatic functional reserve preoperatively, possibly because 99mTc phytate forms a colloid after administration by chelation with calcium ions, so the precise particle diameter and the rate remaining in the colloid form in the body is not known. Moreover, it has been reported that the characteristics of the colloid particles may vary among individuals, and that the image of the kidney is particularly intense in some cases (9, 10).

According to our experience, the hepatic accumulation curve tended to decrease with time more markedly in normal cases even after correction of the half-life of 99mTc, and therefore correct clearance values cannot be obtained unless its hepatic metabolic and excretion are taken into account. In summary, 99mTc phytate is not suitable to estimate the hepatic blood flow because of the unstable characteristics of its colloid.

In this study, a 111In colloid was used for the measurement of the hepatic tissue blood flow. A 111In colloid was prepared according to the method of Komarek (11), and the images were evaluated with a collimator after intravenous injection in the rats. However, it was difficult to obtain images with stable high accumulation in the liver since both bone marrow and heart imaging were labelled too intensely. However, 95% of nuclide could be accumulated in the liver when a preparation obtained simply by mixing the 111InCl$_3$ solution with 0.01 N NaOH, and 0.1 M phosphate buffer (PH 6.5) containing 10% mannitol at the volume ratio of 2:5:5 was used.

Stabilizer was not used during the initial steps of the method. Aggregation was observed over time after preparation, and resulted in imaging of the lungs. Then mannitol was employed as a stabilizer.
The particle diameter of the 111In colloid was greater than that of 198Au colloid (0.03μm) but smaller than that of 99mTc-Sn colloid (0.7 to 1.0μm), with a narrower range of distribution. Therefore, stable distribution into the liver was achieved.

The organ distribution of a radioactive colloid may be influenced also by the condition of the reticuloendothelial system. Then the changes in K_e by increasing the dose was studied, but no difference was observed within the range where measurement was possible. This result may be different from that 111InCl$_3$ solution containing no carrier, and therefore administration of a considerably large amount of the solution cannot be a burden to the reticuloendothelial system. The K_e values remained unchanged by the addition of an activator or suppressor to the reticuloendothelial system. Furthermore, the K_e values correlated significantly with those values of hepatic blood flow measured by the hydrogen gas clearance method. These results suggest that the clearance of 111In colloid may be a useful index of hepatic blood flow, as long as the administration dose is below the limit of uptake for the reticuloendothelial system.

Recently, a new liver scintigraphy using 99mTc-DTPA-galactosyl human serum albumin (GSA) has been developed. GSA binds specifically to the asialoglycoprotein receptors on the membrane of hepatocytes. Therefore, liver imaging with 99mTc-GSA reflects receptor binding activity, and the parameter calculated from the intensity of images is thought to be correlated well with the liver function (12).

Although 111In colloid is promising, further clinical experience is required to elucidate its usefulness.

References

Received July 13, 1994; accepted January 20, 1995.