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Abstract: A control-oriented uncertainty modeling on frequency domain is presented for a class
of spectral systems with unknown high-order modal parameters. At any user-specified frequency,
the set of ell the frequency responses of the feasible systems is characterized on the complex plane in
terms of the convex hull of several circle segments, where the system is said to be feasible if partial
modal parameters are given and some other conditions are satisfied by the unknown parameters.
‘We emphasize that such a characterization enables us to quantify the least upper bounds of errors
for any nominal models, and to develop further efficient results using some additional information.
It is shown that, the dc gain information of the system reduces the size of the feasible set to the
half or smaller for all frequencies. The efficiency of the presented scheme is demonstrated by a

simple example of ideal flexible beam.
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1. Introduction

For controller design synthesis in view of robust control
theary, it is necessary to specify 2 nominal model de-
scribing essential dynamics of the plant and also bounds
of magnitudes of the uncertainty for the plant[l]. On
bounding uncertainty, efforts have been made using not
only physical knowledge or first principles[2] but also
input-output data of the plant. Efficient numerical tech-
niques have been developed for upper and lower bounds
of modal parameters{3]. Most bounding results so far
have been, however, obtained by evaluating the norm
of the error, that is, the size of a ball covering the feasi-
ble set, and this may overestimate the uncertainty and
cause possible conservatisms on subsequent controller
design. -

In this paper we present characterization of frequency
responses in a geometric fashion on the complex plane,
and show that it enables us to develop new results using
information like d¢ gain of the system, which effectively
shrink the size of uncertainty. By ideal flexible beam
example, we will see that if the plant is physically gov-
erned by elastic equation with Kelvin-Voigt damping,
then all the parameters needed for the bounding can
easily be determined in the process of modal analysis
using finite element methods as well as parameter esti-
mation from data.

Notation: By ch(A) we denote a convex hull of a set
A on complex plane, that is, the minimum convex set
which contains A.
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2. The problem and preliminaries

Large flexible structures, plates, and strings, are formu-
lated actually by linear elastic vibrating systems, and it
is well known that they are modeled by superposition
of simple vibrating modes[4)

oo k‘-
Gla) =y 1+ 26(sfw) + (sfun)? W

=1

where 0 < wy < wy < --- — 00 and

o0

Skl <o ®

i=1

for some given p > 0. Here w; is a resonant (angular)
frequency, k; a resonant multiplier, and ¢ 2 damping
factor. We assume that first £ triples of (k;,w;, {;) where
i=1,...,,areknown but all the rest (i = £+1,...,)
unknown. Furthermore, let us assume it is verified that

Gz ywi,andw; >vfori>¢ (3)

for some given y > 0 and v > wy.

Our problem is, then, to characterize the set of all
the possible frequency responses G(jw) as a shape on
the complex plane at any specified frequency w.

Denote the £-th partial sum of G(s), the known part,
by

[4
k;
= ) 4
Gf(s) ; 1+ 24-‘(3/“"’) + (3/‘4).’)2 ( )
and by P}"* the set of all the systems of the form equa-
tion (1) that satisfy the conditions presented above; that
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is,

v o = ki
e = {G“‘"§1+2c.-(s/ui)+(s/w.-)ﬂ
S st < s 20 (G > e)}. (5)
j=t

We call the P! as a feasible set, and P4 {juw) a feasible
set at frequency w, which is the set of all the frequency
responses corresponding to the elements of P5™.

Now, if we define i := p— '2__:;=1 k;, we see

P+ = {6l6) = Galo) + 600

Gls)e PE‘"‘”} (6)

and the feasible set Pg' ¥ at frequency w is character-
ized as
ch {25V Ho(jw)[6 > v}]

information so far [5], but to the best of author’s knowl-
edge, few discussions have ever been focused on the ef-
fectiveness of using dc gain in high frequency range and
other theoretical consequences.

The feasible set which corresponds to this case is
Povd .= PP N'D, where Dy == {G(s)|G(0) = d}.

We define 2 :=d — Efsl k;, and the relation

Pt = {6 = Gto) + GGty € 7B}

("
revenls that it is enough for our problem to character-
ize P5**(jw) for given r, v, and & since P{*(ju) =

—0) |, 3t4)
PEA T () + Goljw).

As the main result, a geometric characterization of
‘P;"‘“’ (jw) is presented in the following
Theorem 1. For user-specified frequency wy let us de-
fine v = w? /{1 + 472w?). Then, the P§""(jw).coin-
cide with the convex hull of the union of the following

six circle segments )
where 1
Ho(s) = s———7773" Ara = {(d=p)/2- Hu(jw) + (d + p}/2- Ho (i)} € 2 v},
2 82 ,
1+-:f * el Au = {(d-p/2- He(jw) + (d+ 0)/2+ Hyooljw) 8 2 v},
This implies that the set P§ *“{jw) is depicted on the Azg == {{d+p)/2 - Ho(Gw) + (d - p)/2- He(juw)|@ > v},
complex plane as the convex hull of the two circle seg- Az = {(d+p)/2- Holdw) + (d ~ p}/2 - Hyooliw)|8 > v},
ments . .
- Ay = {FO Hg(jw),8 > v} Ayp 1= {PHa(Jw_) +d- Aftjwlv <6 < vo},
Agp == {—pHy(jw} + (d+ p)/(4vjw)|v < 8 < o}

Ay = {-—"(t]Ho(jw),B >v}.

Remark 1. Based on the above results, we can im-
mediately give alternate proof of the fact shown in [3]
that, for each frequency w, a complex number G, {w)
that minimijzes ’

sup |G(jw} — Galw)|
GePl™

is G¢(jw), and the minimum

min _ sup |G(jw) - Gulw
L 53 10() = Gule)
is given by
P4 - sup | Ha(jw)|
<o
where

.o 12w}, fow2v
il«::]; W)l = { |Hy(jw), forw < v,

3. Main resulits

Generally, the more information about the plant, the
less gize of feasibie set. We consider the case where the
dc gain

6(0) =Y k(=)
=1

is given. Many researchers have attacked to improve
the precision of reduced order models using such de gain

that is, P24 (jw) = ch [A1aN AN AzaNAzyNA1,N A
where the equality is in the sense of set theoretic.

Note that the sets A;, and A, become empty for
v < v.
A brief sketch of proof We can show the problem is
reduced to the "two term” inclusion problems, as in the
Lemma 1. The following relation holds:

P*4(j) = ch[S5(ju) ®

where S50 (jw) = {kaHu. (i) + keHo, ()l 2
wy > v kg + Ky = d, |kl + |kul = p} is a set of can-
didate extreme points for P (juw).

We can see the convex hulls are characterized by circle
segments as shown in the
Lemma 2. S5***(jw) consists of the union of (S1) and
(82) as foblows. For v > 1,
(S1) the region enclosed by circle segments A4, Ay, and
Alb)
(82) the region by Ad, AZo, .425,
and, for v < v,
(Sl) the region by Ady Alﬂ) Alb: Alpv
(52) the region by A4, Aza, Az, A2,
where A;:= {d- Hs(Gw}|0 > v).

From the theorem, a resuit corresponding to Remark
1 follows immediately as in
Corollary 1. For each frequency w, a complex number
Ga{w) that minimizes supgepe»-+ |G{jw) — Gy (W)} s

8
Ge(jw) + =5 - (Hy (jw)+ Hiooliw)), for v 2wy, and
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Figure 1: The feasible sets with and without de infor-
mation { w = 62 rad,/sec, as in the example}.

Geljw) + @)/ (drsw), for v <,

and the minimum is given by

. Cli) = C
.o Ca:;?“k (jw} = Galw)!

- {(r.(‘)/z) |Ho(jw) = HewlGw)l, for v 2w,
B9 /(4w), for v < vg.

We can prove the Corollary by considering two most
distant points in P£*¢. Note that this gives funda-
mental limitation on the error bounds to any nominal
models, and we call the minimum as the radius of the
feasible set.

As a further consequence of Theorem 1, a rational
nominal model using the dc gain d with explicit least
upper bounds of the errer is given by the following
Corollary 2. Let G,(s) := Gifs) +3“)H+m(s) as a
nominal model. Then, the minimum radius of a disk
which contains P} 4 35 given by

@ +1@)/2  |Hycoljw) — Hy(jw)) For v 2 vy, and

L —(f . .
@9 + @) /(4w) - 11 = dvjwH yoow)| for v < wp.

4. Example

We consider an example for modeling of an ideal flexi-
ble beam. Dynamics of bending motion of canti-levered
beam where sensors and actuators may not be collo-
cated is described as

vt (2,€) + 2vvgecer (£, €) + veeee(t, €) = (€ — & )ult)

o<t <) (9.¢)
v{t,0) = vg(t,0) = vee(t, 1} = vgge(t, 1) =0 (9.0)
y(t) =v(z, &) (9.¢)

sizes of feasible set
i dc info, ]

least emmor bounds for
FW '“'m m "me'

i tue system
0" ' i

Figure 2: Comparison between sizes of feasible sets and
the bound

where §(£) is Dirac's delta function. Furthermore y =
1x10-4, and §; = 1 and £, = 0.5 represent the location
of point input and cutput, respectively.

It is well-known that a countable infinite number of
non-trivial solutions to the eigenvalue problem

v ) =nelf) (0<E<T)

#(0) = ¢'(0) = p"(1) = (1) =0
exist, and let the real eigenvalues are ordered as 0 <

p1 <€ pa < --- and corresponding eigenfunction be
©;(£). The transfer function can be written as
_ by
66 =3 et (10)

i=1

where ¢; = @;{£,) and b; = (&), Taking w? = u;,
$i = ~ywi, and & = ¢;b;/;, this is reduced to (1).
We also have

3 lesfwil® =g, (€0)
i=1

where ¢, (€) is a solution to the following boundary
value problem:

e, () =6 - &), 0<£<

7. (0) = 0, (0) = nf, (1) = n; (1) = 0
1. (€) can be defined similarly, and

ilb.jw;l’ =g (&)

=1

. We obtain an evaluation

p= /e, (€o) - mei(6i)
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as in [3]. We suppose the situation where just first two
modes are known as follows: £ = 2, wy = 3.516, wy =
22.03, k; = 01099, k; = ~5.88 x 1073, d = 0.104,

p=0.118, 7 = 211 x 10-3, 3 = 1.89 x 10~4. The
construction of feasible set at frequency w = 62 rad/sec
is depicted inFigure 1. The frequency characteristic of
the radii of the feasible set with and without d¢ gain
are compared in Figure 2. Error bounds of the proposed
nominal model in Corollary 2 is also plotted in the same
figure,

5. Conclusion

In this paper we proposed a modeling of uncertainty in
elastic vibrating systems. Here we presented a method
to characterize uncertainty as a feasible set in the fre-
quency domain. The shape of the bounded set of all the
complex numbers of frequency responses of the systems
that satisfy the condision is depicted by several circle
segments,

Theoretical limitation was clarified about the mini-
" mum additive uncertainty of any nominal models under
the information given. The set theoretic characteriza-
tion enables us to develope new results that the infor-
mation of de gain of the system will effectively shrink
the size of the feasible set.
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