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Abst rac t  

A dcsigii inethod of multivariable model reference ad- 
aptive control system (MRACS) using coprime fac- 
torization approach is proposed. First, a relation be- 
tween the copriine factorization over R H ,  and tlie 
interactor matrix is derived. Using this relation, a 
method for design of multivariable MRACS over tlie 
ring of proper stable rational functions is obtained. 
Since tlie proposed method is based on tlie coprime 
factorizatioii approach, tlie control structure in tliis 
paper is more simple. I t  is sliowii tliat tlie control 
structure of multivariable MRACS by otlier authors 
is included in tlie structure proposed in tliis paper. 
A robust MRAC scheme which achieves asymptoti- 
cally rejection of unmeasurahle disturbance is derived 
also. 

1. Introlduction 

Tlie mnltivariable model reference adaptive control 
systems have been extensively studied by inany the- 
orists and practitioners, aiid lias lwen estaldislicd as 
one of the mostly used design metliods in tlie field of 
control. The solution of tlie MRACS problem coii- 
sists of two parts: tlie algebraic part deals with tlie 
controller structure with whicli given plant inatclics 
the referelice model exactly. And, tlie otlier is tlie an- 
alytic part whicli deals with the manner tlie control 
parameters are to  be adjusted, i.e. with tlie aclap- 
tive adjusting law. In the algebraic part the model 
matching design problem is siniply aiid straiglitfor- 
wardly solvecl by tlie coprime factorization in tlie set 
of proper stable ratioiial functions. In the multivari- 
able MRAC case the issue of tlie parametrization of 
tlie coiitrollcr becomes a dominant problem which is 
solved by using tlie interactor matrix. In order to 
apply tlie general solution, it is necessary to  bridge 
between coprime factorization and the interactor ma- 
trix. Tlie contributions of tliis paper are to  give such 
a relation and to apply the model matching sclienie 
based on the coprime factorization to  a MRACS de- 
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sign. 
Since Wolovicli and Falb [l] developed tlie concept 

of interactor it lias hacl an important role in inulti- 
variable adaptive control. Since then a considerable 
amount of important contributions to  tlie control lit- 
erature has done. Elliott aiid Wolovicli [9] proposed 
a design method of multivariable MRACS basecl on 
the exact model matching (EMM) approach, where 
the prior knowledge of the interactor was explicit. 
In their method factorization of tlie plant over po- 
lynomial ring was used for tlie construction of EMM. 
Later, they extended the method [lo] to tlie case tliat 
only tlie order of tlie interactor was a prior8 known. 
In [3] the previous results on multivariable discrete- 
time adaptive control were generalized for a linear 
systeins with a stable inverse. However, relations to 
coprime factorization have not been stated explicitly. 
In [15] is given an algorithm for a discrete-time robust 
regulation system structure described in tlie ring of 
proper stable rational functions, but tlie MRACS de- 
sign problem was not discussed there. Tlie problem 
of designing robust multivariable control systems was 
further examined in [GI, but they consiclered only a 
plaiit factored over polynomial ring. 

The factorization approach allows to  parametrize 
all stabilizing compensators for given plant and, more- 
over, tlie solution of model inatcliiiig problem can be 
made more straightforward. Therefore, by using the 
factorization approach over a ring of proper stable 
rational functions in tlie algebraic part of MRACS 
design, tlie synthesis aiid analysis caii be expected to  
be more siinple aiid clear. 

In this paper, first, tlie a priori information about 
the plant is specified. Then an EMM control struc- 
ture based on factorization over proper stable rational 
functions is proposed. Tlie control parameters needed 
to  be identified in order to  achieve tlie EMM roiitxol 
law are established. Further relations between the in- 
teractor matrix and tlie coprime factorization of the 
plant are derived and solution of tlie Bezout identity 
in tlie ring of rational functions is derived. Next, the 
EMM control law, described in ternis of tlie adjust- 
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ing parameters aiid tlie known iiit,eractor matrix, is 
given. Finally, this paper shows that a design method 
of robust multivariable MRACS in preseiice of deter- 
ministic dist,url>ances can be easily derived. Based 
011 the factorization approach, the structure is more 
clear and simple t,liaii Elliot aiid Wolovich's one (91. 

2. Preliminary Assumptions 

The following notations from [12] are used. R" de- 
notes an n dinieiisional Euclidean space. RH, rcp- 
resents tlie ring of proper stable rational functions in 
indeterinined variable s with coefficients in the field 
of the real numbers (R). R(s )  denotes the field of ra- 
tional functions in s with real coefficients. Tlie riiig 
of polynomials with real coefficients is given by R[s . 
For tlie size of given matrix, the notations RHmPX , 
R ( s ) P ~ ' ,  ancl ~ [ s ] ' ~ '  mean tliat tlie eleineiits of the 
(p x 1)  matrix are from RH,, R(s ) ,  or R[s] respcc- 
tively Furtlirr, &[.I a i d  a,j[.] express the coluiiiii 
and raw degrees of given polynomial matrix, aiid [.IC 
([.]R) is for the highest column (raw) degree coeffi- 
cient mat ris notation. 

Consicler an unknown linear, time-invariant, finite 
dimensional, plant with ni-inputs aiid m-outputs char- 
acterized by a transfer matrix T ( s ) .  It is assumed 
that T(s) is full rank and strictly proper, that  is, the 
relative degree of each transfer function coinpoiient is 
positive. T( s) can always be factored as: 

1 

(1) 
y ( t )  = T(s)u( t ) ,  T ( s )  = R[s]P[s]-1 

= P[s]-1Ei[s], 

where R[s], P[s] E R[sImxm are r_elatively right prime, 
and P[s] is column proper. Also B[s] ,  P[s ]  E R[S]"'~"' 
are relatively left prime and P[s] is raw proper ma- 
trix [SI. u ( t ) ,  y ( t )  E R"' are tlie plant input aiid 
output vectors respectively. 

The transfer matrix of tlie reference model, denoted 
as T,+f(s), is strictly proper and asymptotically stable 

yAf(t )  = T A 4 ( s ) t J ( f ) ,  TA4(s) = &Af[s]P~bf[S]-~* 
(2) 

where RAf[S], &[SI E R[sImxm are relatively right 
prime. t i ( t ) ,  yM(t) E R"', piecewise coiitinuous aiid 
uiiifornily bounclecl, are the model input and output 
vectors respectively. 

The next lemma gives an extension to  tlie interac- 
tor matrix definition. 

Lemma 1 [l I ]  One expression of the interactor ma- 
trix of a nonsingular plant (1)  is the nonsingular n ~ .  x 
m,, lower left trian.gular polynomaal matrix L[s] of the 
f o m  

L[s] = C[s]diag[ri(s)], i = 1,. . . ,m (3) 

where T ~ ( s )  is a polynomial and 

where aij(s) is a polynomial (or is zero), such that 

8'03 liin L[s]T(s) = G (4) 

with G nonsingular. 

The following three assumptions are macle for the 

(Al) det(R[s]) is asymptotically stable polynomial; 
(A2) The system maximum observability index is 

k11own; 
(A3) Tlie interactor matrix L[s] of tlie form (3) is 

known. 
The coiitrol problem is to determine a clifferentiator 

free controller which generates a bounded control in- 
put signal vector, so that all the signals in the closed 
loop system remain bounded and the following equa- 
tion is satisfied: 

plant [9]: 

liin e ( t )  = liin ( y ( t )  - y A l ( t ) )  = 0. 
t+oo t-00 

3. Multivariable MRACS based on the 
coprime factorization over RH, 

Coprime factorization representation of EMM 
system 

Consider a coprime factorizatioii of the plant (1) over 
a ring of proper stable rational functions RH,. 

T ( s )  = N(s)D(s)-1 

The following theorem gives an cspressioii for plant 
factorizatioii over R H ,  in terms of tlie known (as- 
sumption (A3)) interactor matrix. 

Theorem 1 Let the interactor matrix L[s] be such 
that det[l[s]] i s  an asymptotically stabZe polynomial. 
Then the coprime factorization of the plant transfer 
matrix (6) expressed in terms of the interactor m,atrix 
L[s] is  given by: 

N ( s )  = L[s]-'G, D ( s )  = T(s)-'L[s]-'G (7) 

Proof. &om Lemma 1, taking tlie polynomials r ; ( s )  
stable an interactor matrix such that dct[L[s]] is sta- 
ble can be chosen. From expression (3) it directly fol- 
lows that N ( s )  E R H ,  and D ( w )  = I. Also, from 
assumption ( A l )  and, again, from tlie above lemma 
it is clear that  D ( s )  does not have poles in C+. Also, 
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from the clefinition of N ( s ) ,  it does not liave unsta- 
ble zeroes. Hence, it can be sliowii that N ( s ) ,  D ( s )  
E R H ,  are coprime. From eq. (7) it is clear that 
T ( s )  = N ( s ) D ( s ) - ' .  

I 
Now using tlie above tlieorein a solution of tlie 

EM14 problem will be given. The EMM problem is 
to fincl a stabilizing conipeiisator for a given plant (1) 
such tliat tlie closecl loop transfer fuiictioii inatrix 
Tyv(s) of tlie system is equal to giveii inodel transfer 
function matrix T,jf (s). The next proposition gives a 
generalized EAIM control law basecl on two parameter 
coinpensation scheme in R H,. 
Proposition 1 [4/ Con,szder (I p l m t  trmsfer  matrzx 
T ( s )  factored as an (G) and let all notataons are as zn 
equatzons (4) and (7). If the transfer m a t n x  of the 
reference m,odeI Thf(s) 1s given as 

Tnf(s) = N(s)Ii(s) for  some Ii(s) E RH, 

then the con,trol law whzch fzchzeves the EMM as: 

( 8 )  

u.(t) = Y-'(s)Ii(s)u(t) - P ( s ) A - ( s ) y ( t ) ,  (9) 

where K ( s )  is  n solution of (8)  and X(s), Y(s), E 
RHmm xn' satisfy the Bezout iden,tity: 

X ( s ) N ( s )  + I'(s)D(s) = I. (10) 

Remark 1 Theorem 1 also allows to express the con- 
dition for  EMM eq. (8) in terms of the interactor mn- 
trix L[s]: 

T ~ # ( S )  = L[s]- 'GIi(s)  I~(s) E RH,. (11) 

The description of the refe,rence model here is same 
as in, e.g. /9]. 

Remark 2 Proposition 1 gives n generalized expres- 
sion. for tlie EMM control lnm for a multivariable plant. 
This follows directly from the fact that eq.(lO) is  the 
condition for  stabilizir~g compensator, and ,also, from 
the reference m)odel transfer matrix equation (8). 

R.ewrit,iiig eq. (9) in observer-controller foriii yields 

u( t )  = (I - Y ( s ) ) u ( t )  -. X ( s ) y ( t )  + l i ( s )v ( t )  
(12) 

a general descript.ioii of the control law in RH,. 
Tlie structure of tlie system is shown in Fig. 1. 

Identification model 

Because the only a priori information about tlie plant 
is that,, given by assumptions (Al)-(A3), there is a 
need to  identify the unknown parameters, included in 
the control law (12). In this section tlie identification 
model is clerived. 

_ Y  T I '  

Figure 1: Exact Model Matclling System 

Multiplying eq. (10) from tlie left-hancl side by AT( s) 
and from the riglit-hand side by D ( s ) - l u ( t )  gives: 

Y ( t >  = "'(Mt) + - W y ( t ) l  (13) 

Tlie following proposition gives t lie contlitioiis for 
the orders of X ( s )  aiid T'(s). 

Proposition 2 Let the plant maxzmnl observnbzlzty 
zndex as denoted by U, and let : [ S I  = <(s)I  for  some 
monzc stable polynomzal <(s) of order v-l+p (p 2 0). 
Then there exzsts a solutzon X(s), Y(s) E R H ,  of 
the Bezout adentzty (10) of the form: 

x(s) = Z[s]- 'Z,[s] ,  I'(s) = Z[s]- 'ZY[s]  (14) 

Proof. Siiice P[s]  aiid R[s]  are right coprime there 
exist polynoiiiial matrices U [ s ] ,  V[S] E R [ s I m x m  such 
that 

U[s]R[s]  + V [ s ] P [ s ]  = I (15) 
is satisfied. Denote Zl[s]  = G-'L[s]R[s] .  Multiply- 
ing (15) from the left side by :[SI Zl[s]  gives: 

E[s]Z*[s]U[s]R[s]  + Z[s]Z1[s]T~[s]P[sJ = Z [ S ] E ' [ S ]  

(16) 
Perforining polynoinjal inatrix division [ 131 of 
S[S]Zl[S]U[S]R[S] hy P [ s ]  

Z[s]Z,  [s]U[s]  = Q[s]f'[s] + E[s]  (1'7) 
Bc,[E[s]] < & ; [ P [ s ] ] ,  

where Q[s] ,  E[s] E R[sImxm.  Siiice tlie observability 
iiidexes are coincident with tlie raw degrees of Ii [s] ,  
for v we have v 2 S,+[P[s]] ,  i = l , . . .  , n i .  Also, 
because v 2 ac , [P[s ] ] ,  i = 1, . , ? i t ,  theii v - 1 2 
a, i [E[s]] ,  i = 1, .  . . ,111. After substitution of eq. (18) 
in (lG) and rearrangeineiit tlie following yielcls 

E[s]R[s]  + ( E [ s ] Z ~ [ S ] V [ S ]  + &[S]X'[S])P[S] = Z [ S ] ~ ~ [ S ] .  
(18) 

Multiplying eq. (18) from left by Z[s]-' and from tlie 
right side by Zl[s]-'  gives 

Z[s] - 'Z , [s ]N(s)  + : [ s ] - ' z y [ s ] D ( s )  = I ,  (19) 
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wliere z,[s] = ~ [ s ] ,  Z , [ S I  = Z [ S I ~ ~ [ S ] V [ S ]  + ~ [ s ] r i [ s ] .  
From tlie definition of Z[s] and tlie fact that tlie orcler 
of Z,[s] is less than v- 1, it directly follows that X ( s )  
E RH,. Also, for eq. (19) when s -+ 00, I'(s) = I, 
and noting tlie definition of Z[s] ,  it can he concluded 
that Ir(s) E RH,.  

I 
From Theorem 1 aiid Proposition 2 tlie identifica- 

tion inodel (13) now caii be rewritten as: 

From the proof of Prop. 2 

(21) 
Z,[S] - <(s)I  = H,/-2+pS'/-z+p + . * * + Ho 
Z,[S] = .Ju-l+ps"-'+p + . . . + .A). 

Forin a stat,e variable filter 

aiid define the uiiknown parameters vector as 

Hence tlie output inoclel (20) Ixcomes: 

y ( t )  = L[s]- 'G[Ou(t)  + u( t ) ] .  (24) 

Furtlicr, preniultiplying (24) by L[s] gives 

L[s]y( t )  = Qa(t),  (23) 

where 

Q = [GO, G] 
a(t)T = [w(t)', W.(t)T]. 

To avoid tlie differentiation a staiidard filter argu- 
ments caii he used: 

f - ' ( s )L[ s ]y ( t )  = G,S(t), (26) 

where 
s(t) = f - ' ( s )a( t ) .  

f ( ~ )  is chosen to  be a stable inoiiic polyiiomial of 
order same a.5 tlie order of L[s]'s elciiieiit of maximuin 
order. Equat,ion (26) is a linear relation between tlie 
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filtered input ailcl output of tlie plant and tlie matrix 
of unknowii parameters 8. 

In order to  estimate 0 and G a suitable method 
caii be chosen [9],  [12]. 

For the control law (12), usiiig equations (22) and 
(23) we obtain 

~ ( t )  = -Od( t )  + G - ' L ( S ] T ~ ( S ) U ( ~ ) .  (27) 
By usiiig tlie identified parameters 0 aiid G tlic con- 
trol law (9) becomes realizable. 

Thus tlic structure of MRACS is establislicd. 

4. Relations to other methods 

Tlie relation to  tlie structure given by Elliott and 
Wolovicli [9] is briefly shown here. Tlie control law 
in [9] is 

u( t )  = Ii[s]q;l(s)u(t)  + H[s]q , ' ( s ) y ( t )  

+ G - ' L [ s ] y n ~ ( t ) ~  (28) 
where ql(s) is a stable monic polynomial of order 
v-1, and I<[.] ancl H[s]  satisfy tlie Diopliantiiie equa- 
tion: 

I<[s]P[s] + H[s]R[s]  = q1(s)[P[s] - G--'L[s]R(s]]. 
(29) 

This control law is derived from the control law in the 
previous section tlirougli tlie following substitut,ioiis: 

E[.] = -qi(s)l ({[SI = -qi(s)) (30) 
Z&] = H[sI (31) 
Z,[S] = I i [ s ]  - q1(s)I (32) 

Tlie above shows that  tlie coiitrol structure pro- 
posed in this paper is more general tlian the structure 
given by Elliott and Wolovicli [9]. 

5. Robust MRACS in presence of 
Deterministic Disturbances 

There exist several schemes for dcsigii of a MRACS 
wlien tlie disturbaiice inodel is known [5][G][7]. In 
this section a MRACS including the inoclcl of exter- 
nal disturbances is constructed by using tlie copriiiie 
factorizatioii ovcr RH,. 

Let tlie distur1)ance d l ( t )  applied to tlie plant input 
is clescribed as: 

dl(t)  = Gds)dol  (33) 
where do is a scalar constant vector, and Go(s) is 
ail unstable disturbance signal generator liaviiig left 
coprime factorization as 

G D ( s )  = B D ( s ) - ' ~ ~ D ( s ) .  (34) 

Tlie solution to tlie problem of disturbance rejec- 
tion is giveii next. 



Theorem 2 141 Let d(s) denote the largest invari- 
ant factor of dD(s). Then there ezists a compensator 
C(s) whtch achieves dtsturkmce rejection asymptoti- 
cally if N ( s )  and d ~ ( s ) I  are left-coprime. Moreover, 
the set of all C(s) which achteve dtsturbance rejection 
2s gzven b y  

{cl(s)/dD(s) : c l ( s )  E s ( T ( s ) / 4 D ( s ) ) )  (35) 

where S ( T ( s ) )  denotes the set of all compensators c 
E R ( s ) ~ ’ ” *  that stabilzze T(s). 

Because the plant T (  s) is a minimum-phase (as- 
sumption (AI)) it satisfies the condition of Theo- 
rem 2. 

Now, construct the followiiig augmented system: 

TE(s) = T(s)/dD(s) (36) 

Tliroreiii 2 shows that a compensator which stabilizes 
the extended system TE(s )  can be found. First, con- 
sider a factorization of TE(s)  and a Bezout identity 
as follows: 

TE(s) = NE(s)DE(s)-’ := BE(s)-~&E(s) 
(37) 

In [2] the relation between the factorization of the 
original plant T ( s )  and the factorization of the aug- 
mented system TE(s)  is given as 

-XE(s)NE(s) + ’ I k ( s )DE(s )  = I -  

NE(s) = N(s), D E ( S )  = dD(s )&) ( s )  (38) 
ArE(s) = N ( s )  BE($) = dD(s)D(s). 

Then the EMM control law which achieves distur- 
bance rejection, using eq. (12) can be written as: 

i ( t )  = ( I  - YE(S))U(f )  - & ( s ) y ( t )  (39) 
+I<( s) ( J (  t )  

where I<(s) E RH, is the solution of eq. (8). 
The next proposition considers the expressions for 

XE(S) aiid I i(s) .  

Proposition 3 Let ( n ~ [ s ] ,  d ~ [ s ] )  be right coprime 
factors of d ~ ( s )  over algebratc polynomial ring, where 
d ~ [ s ]  and ng[s ]  are monic Hurwitz polynomials of 
order q ,  and d ~ [ s ]  is stable. And let ZE[S] = < E ( s ) ~ ,  
where ~ E ( s )  is a monic stable polynomial of order v- 
1 + p  + q ( j  2 0). Then there ezists a solution X E ( S ) ,  
YE(s) E R H ,  of Eq. (37) given as 

xE(s )  = EEIS]-lZzEIS], nk(s) = zE[8]-1zyE[s]. 

(40) 
Proof. The proof is contained in the appendix. 

From this proposition I t  is seen that for the case of 
presence of deterministic disturbance, the MRACS is 
constructed in a similar fashion as it  was done in the 
previous section. 

6. Conclusion 

In this paper a relation between the copriiiic factor- 
ization over RH, aiid the interactor matrix was de- 
rived. Using this relation, a method for design of 
multivariable MRACS over the ring of proper stable 
rational functions was derived. The prior information 
iiecded for tlie realization of the control law, given in 
the first scction, is almost the same as in [9] where 
the proposed MRACS algorithm is basecl on presen- 
tation over polynomial rings. I t  is shown that tlie 
coiitrol structure of MRACS in [9] is included in the 
structure proposed in this paper. The condition for 
the a priori knowledge of the iiitcractor matrix is a 
key for the developing the proposed scheme. A robust 
MRAC scheme which achieves asymptotically rejec- 
tion of unmeasurable disturbance was derived also. 
The proposed scheme is an extention to tlie results 
given in [5] and it is hoped that it will lead to utilizing 
the recent results of the area of linear multivariable 
coiitrol systems using factorization approach. 
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Appendix A 

Proof of Theorem 3. Let tlie factorization of the 
augmented system over the ring of polynomial matri- 
ces is 

TE(s) = T(s ) /@D(s )  (41) 
= (R[s]dD[s])(P[$]nD[s])-’  
= ( p [  81 D [ S ]  ) - ’ (A[ 8 ] d D  [ S ]  ) . 

Note that the factorization inay not he coprillie. De- 
cote ~ E [ S ]  ? R [ S ] C ! D [ S ] ,  PE[S] = p [ S ] n ~ [ 5 ] ,  RE[$] = 

system can be rewritten as 
R[s]dD[s], p E [ S ]  = P[S]??D[s). NOW the aUglllCllted 

TE(S) = R E [ s ] P ~ ’ [ s ]  = p i ’ [ S ] & ~ [ 8 ] ,  (42) 

and tlie column and raw degrecs of PE are given by 
next relations 

U + q  2 & i [ & [ S ] ] ,  i = I , .  .. ,m (43) 
1/ + q 2 a c i [ p E [ S ] ) ,  a = 1,. S .  ???,. (44) 

Since P&) and R[s] are right prime (because detn[s] 
is asymptotically stable polynomial) then there exist 
polynomial niatrices UE[S] ,  VE[S] E R[sJmXm satisfy- 
ing the Bezout identity 

U E [ S ] R [ 8 ]  + v E [ s ] p E [ S ]  = I. (45) 

Let Zl[s] be the same as in the proof of Proposi- 
tion 2, that is, : ‘ [SI = G-’L[s]R[s].  After multi- 
plying the last equation from the left-hand side by 
d D [ S ] S E [ S ] Z l  [s] and rearrangement the following yields 

= E  [a]= 1 [s]UE [SI RE is]  -k (46) 
~ D [ ~ ] ~ E [ S ] Z ~ [ ~ ] V E [ ~ ] ~ ) E [ S ]  = ~ D [ S ] Z E [ S ] ~ ~  [ S I .  

Now a polynomial matrix division gives 

Now, substitute 

Z Z E [ S ]  = E E [ S I ,  

Z,,[S] = Q E [ S ] ~ ~ E [ ~ ] I I D [ ~ ]  + ~ D [ S ] Z E [ S ] Z I [ S ] ~ ‘ E [ S ] ,  

and multiply eq. (51) from left-hand side by Z:E[S]-’, 
and from right-hand side by (31 [s]dD[s])-’ .  This 
gives as a result the following 

Z ’ E 1 [ S ] Z Z E I S ] N E I S ]  + s,’[s]Z,,[s]D&] = I, (52) 

where the relation N E ( s )  = N ( s )  = L[s]-’G is used. 
Now applying eq. (40) yields (37). 

What remains is to  show that x E [ S ] ,  y E [ S ]  E RH,. 
X E [ S ]  E RH, follows directly from the definition of 
Z E [ ~ ]  and the order of Z,,[S] .  From eq. (52), wlicii 
s t 00, 1k(oo) becomes equal to I, and from the 
definition of &[SI it can be concluded that I T ~ ( s )  E 
RH,. I 
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