慢性関節リウマチ患者の血清および関節液中のフェリチンの測定について

古野勝志・森永寛・入野昭三*　
岡山大学医学部附属病院三朝分院内科　
(1982年12月2日受付)

I. 論 言

近年、ADDITION ら（1972）によりフェリチンの放射免疫測定法が開発され、正常人の血清中にフェリチンが検出されて以来、鉄欠乏性貧血、悪性腫瘍およびその他の各種疾患において、血清フェリチンの測定が行われ、その臨床的意義について注目されている（ADDITION ら1972, LIPSCHITZ ら1974, 深津ら1979）。

著者らは Immunoradiometric assay 法（IRMA）、および Radioimmunoassay 法（RIA）の各測定用キットの使用について若干の基礎的検討を行い、ついで慢性関節リウマチ疾患をはじめ2～3の疾患において血清フェリチンを、また、慢性関節リウマチおよび変形性関節症患者より得た関節液中のフェリチンを測定し、若干の興味ある知見を得たので報告する。

II. 試料および測定方法

II-1. 試 料

岡山大学温泉研究所および岡山大学医学部附属病院三朝分院に勤務する職員で、定期健康診断で胸部 X-P、肝機能（GOT, r-GTP）、血清総蛋白量、血清蛋白分画、HB 抗原、血液比重（1.052以上）および血液像（白血球数、赤血球数、血色素量 12.0 g/dl 以上、ヘマトクリット値）の検査の結果、異常を認めなかった男性34例、女性38例の肘関節から採取した血清を健常人試料とした。

また、岡山大学医学部附属病院三朝分院で、アメリカ・リウマチ協会の診断基準に基づき慢性関節リウマチと診断された男性10例、女性25例の血清を試料とした。

関節液試料は慢性関節リウマチ14例、変形性関節症12例より得た。関節液中に浮遊物の存在する時は遠沈し、その上清を用いた。

血清および関節液は測定まで-20℃で保存した。

II-2. 測定方法

実験に用いたフェリチン測定用キットは、ヘキスト株製の IRMA 法；リアグノストフェリチン®および CIS 社製の RIA 法；フェリチン I-125 キット®である。両キットの操作手順を Fig. 1-a、-b に示した。

III. 結 果

III-1. 標準曲線について

IRMA 法では0～400 ng/ml、RIA 法では0～600 ng/mlのフェリチン濃度の範囲で標準曲線を作製された（Fig.2）。

III-2. 再現性について

同一血清を10回連続測定を行った時の変動係数（C.V.）は、IRMA 法では7.4～9.9％、RIA 法では5.6～8.0％であった（Table1）。

III-3. 回収試料について

フェリチン濃度既知の血清に標準フェリチン 25.0～150.0 ng/ml を添加した時の回収率を検討した。
IRMA 法では88.4～115.7％平均 101.2％、RIA 法では96.8～106.3％平均 101.0％であった（Table2）。

III-4. 希釈試験

フェリチン濃度170 ng/ml、260 ng/mlの血清を各測定用キットに添付されている希釈油血清を用いて2，4，8，10倍希釈したところ IRMA 法、RIA 法両キット共に希釈倍数と測定値の間に直線性が見られた（Fig.3）。

*現香川医科大学内科学講座教授
Fig. 1-a Assay procedures (IRMA)

(1) Anti-ferritin coated beads 100 μl
(2) Buffer soln. 200 μl
(3) Standard soln. (0-400 ng/ml) or sample 100 μl

Shake tube by hand
Incubate for 5 hrs. at 37 °C

Soln. discard
Wash with 2 ml distilled water
Soln. discard
Anti-ferritin-125I-antibody 300 μl

Incubate for over night (15-17 hrs.) at 37 °C.
Soln. discard
Wash with 2 ml distilled water.

Measure the radioactivity of the beads.

Fig. 1-b Assay procedures (RIA).

(1) Phosphate buffer soln. 250 μl
(2) Standard soln. (0-600 ng/ml) or sample 100 μl
(3) 125I-ferritin 100 μl
(4) Anti-ferritin antibody 100 μl

Incubate for 18-22 hrs. at room temperature.

Immunoabsorbent 100 μl

Incubate (shaking) for 30 min. at room temperature.

Centrifugation (3000 rpm, 10 min.)

Sup. ppt
discard
wash with 0.1% Tween 20 3.0 ml

Centrifugation (3000 rpm, 10 min.)

Sup. ppt counting

table 1 Reproducibility of the measurement of ferritin in serum.

<table>
<thead>
<tr>
<th>No.</th>
<th>IRMA sample</th>
<th>RIA sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample 1</td>
<td>sample 2</td>
</tr>
<tr>
<td></td>
<td>sample 4</td>
<td>sample 5</td>
</tr>
<tr>
<td>1</td>
<td>26.0</td>
<td>115.0</td>
</tr>
<tr>
<td></td>
<td>46.0</td>
<td>225.0</td>
</tr>
<tr>
<td>2</td>
<td>23.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>47.0</td>
<td>235.0</td>
</tr>
<tr>
<td>3</td>
<td>28.0</td>
<td>110.0</td>
</tr>
<tr>
<td></td>
<td>55.0</td>
<td>230.0</td>
</tr>
<tr>
<td>4</td>
<td>28.0</td>
<td>110.0</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>235.0</td>
</tr>
<tr>
<td>5</td>
<td>30.0</td>
<td>110.0</td>
</tr>
<tr>
<td></td>
<td>46.0</td>
<td>220.0</td>
</tr>
<tr>
<td>6</td>
<td>24.0</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
<td>270.0</td>
</tr>
<tr>
<td>7</td>
<td>24.0</td>
<td>109.0</td>
</tr>
<tr>
<td></td>
<td>49.0</td>
<td>270.0</td>
</tr>
<tr>
<td>8</td>
<td>27.0</td>
<td>114.0</td>
</tr>
<tr>
<td></td>
<td>47.0</td>
<td>265.0</td>
</tr>
<tr>
<td>9</td>
<td>23.0</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>49.0</td>
<td>270.0</td>
</tr>
<tr>
<td>10</td>
<td>30.0</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>49.0</td>
<td>235.0</td>
</tr>
<tr>
<td></td>
<td>Mean 26.3</td>
<td>105.1</td>
</tr>
<tr>
<td>±S.D.</td>
<td>2.6</td>
<td>7.8</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>9.9</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Table 2 Recovery test.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ferritin in serum (ng/ml)</th>
<th>Ferritin (ng/ml)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRMA</td>
<td>Added</td>
<td>Found</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.0</td>
<td>20.0</td>
<td>33.0</td>
</tr>
<tr>
<td>2</td>
<td>69.0</td>
<td>20.0</td>
<td>85.0</td>
</tr>
<tr>
<td>3</td>
<td>95.0</td>
<td>38.0</td>
<td>145.0</td>
</tr>
<tr>
<td>4</td>
<td>80.0</td>
<td>38.0</td>
<td>120.0</td>
</tr>
<tr>
<td>5</td>
<td>68.0</td>
<td>40.0</td>
<td>125.0</td>
</tr>
<tr>
<td>6</td>
<td>91.0</td>
<td>90.0</td>
<td>160.0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIA</th>
<th>Added</th>
<th>Found</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>2</td>
<td>7.0</td>
<td>25.0</td>
<td>98.0</td>
</tr>
<tr>
<td>3</td>
<td>24.0</td>
<td>150.0</td>
<td>170.0</td>
</tr>
<tr>
<td>4</td>
<td>118.0</td>
<td>150.0</td>
<td>285.0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ng/ml)
Fig. 2 Calibration curves for ferritin

III-5. IRMA法とRIA法の相関性について

血清20試料についてIRMA法とRIA法で測定した時 の両測定値間の相関係数はr=0.989 (p<0.01)と 良好な相関性が認められた。また、回帰直線はY=0.94 X+7.9であった（Fig.4）。

III-6. 血清試料の保存期間とフェリチン測定値

血清試料の保存期間のフェリチン測定値におよぼす 影響について検討した。-20°Cで保存した場合、100日 以上の保存で平均16%の測定値の低下が見られた（Fig. 5）。

III-7. 健常人の血清フェリチン値

健常人の男性34例、女性38例の血清フェリチン値は それぞれ131.4±52.1 ng/ml、58.4±39.9 ng/mlで、男 性は女性に比べ高値を示す傾向にあり、両者の間には有意差（p<0.01）が認められた（Fig.6）。また、30 ng/ml以下（鉄欠乏状態のフェリチン値）は、男性で2例（5.9％）、女性では8例（21％）であった。

III-8. 慢性関節リウマチ患者の血清フェリチン値

慢性関節リウマチ患者の男性10例、女性25例の血清フェリチン値は、それぞれ337.0±293.4 ng/ml、181.4± 329.9 ng/mlで、男性が高値を示す傾向にあったが、差は認められなかった（Fig.7）。また、健常人との比 較では両性いずれも慢性関節リウマチ患者が高値を示し、いずれも有意差（男性：p<0.01、女性：p< 0.05）が認められた。

III-9. 2〜3の疾患の血清フェリチン値

慢性関節リウマチを除く2〜3の疾患について、血 清フェリチンの測定を行った。鉄欠乏性貧血では低 値を、再性不异性貧血、各種癌患者では高値を示した（Fig.8）。
Fig. 3 Dilution test of ferritin in serum.

Fig. 4 Relation between immunoradiometric assay (IRMA) and radioimmunoassay (RIA) on the measurement of ferritin in serum.

Fig. 5 Relation between the value of ferritin in serum and the term of preservation at -20°C.

Fig. 6 Serum ferritin in healthy controls.
Ⅲ-10. 血清フェリチン値と血清鉄値

血清フェリチン値と血清鉄値の相関性について検討した（Fig. 9）。慢性関節リウマチ患者で血清鉄を測定した場合で相関係数 r = -0.045 で、両者の間には相関性が認められなかった。一方、慢性関節リウマチを除く 2～3 の疾患（Ⅲ-9）では r = 0.686 (p < 0.01) と相関性が認められた。

Ⅲ-11. 血清フェリチン値と総鉄結合能

血清フェリチン値と総鉄結合能（TIBC）の相関性について検討した（Fig. 10）。慢性関節リウマチ患者では相関係数 r = -0.054 で、両者の間には相関性は見られなかった。一方、他の疾患においては r = -0.522 (p < 0.01) と負の相関性が認められた。

Ⅲ-12. 関節液中のフェリチン値

関節液試料 0.5 ml に対し、ヒアルロニダーゼ（スプラーニー 持田製薬、1 Amp 500単位、1 ml）50単位を加えて 37℃ にて 10分間放置した後、希釈用血清を用いて 50～100倍に希釈し、血清試料と同様に操作した。また、ヒアルロニダーゼはフェリチン測定に影響しないことを確認した。

変形性関節症（OA）12例および慢性関節リウマチ（RA）14例の関節液中のフェリチン値は、それぞれ1429 ±1005 ng/ml、2894±3017 ng/ml で、RA は OA に比べ平均値では高値を示す傾向にあったが、有意差を認めるにいたらなかった（Fig. 11）。

IV. 考 按

血清フェリチン値は生体内の鉄貯留量を反映して変動するため（Addison ら 1972, Lipshitz ら 1974, Bentley ら 1974），その測定は血清鉄と共に鉄欠乏性貧血や鉄過剰症などの診断、治療に有用な検査法の 1 つである。特に、潜在性の鉄欠乏性貧血の診断には欠くことのできない検査法となっている。また、近年、この血清フェリチン値は悪性腫瘍において高値を示すものが多く、その測定値は腫瘍を示す補助的診断あるいは治療経過の観察にも応用されている（新津ら 1975，浅川ら 1978）。

放射免疫測定法を用いたフェリチン測定キットには IRMA 法と RIA 法があり、前者は固相（プラスチック球）に接着させた抗フェリチン抗体と試料溶液中のフェリチンが結合し、その抗体結合フェリチンは更に 125I でラベルされた抗フェリチン抗体を結合し、固相に接着
Fig. 9 Relation between serum ferritin and iron in serum in patients with rheumatoid arthritis and other diseases.

Fig. 10 Relation between serum ferritin and TIBC in patients with rheumatoid arthritis and other diseases.
慢性関節リウマチ患者の血清および関節液中のフェリチンの測定について

Fig. 11 Concentration of ferritin in synovial fluids in patients with osteoarthritis and rheumatoid arthritis.

した抗体—フェリチン—の複合体を作り、そのため IRMA 法では試料中のフェリチン量の増加は放射能（計数率 cpn）の増加となる。一方，後者では抗フェリチン抗體に対して，試料中のフェリチンと 125I でラベルされたフェリチンの競合的免疫反応を利用したものであるため，前者は逆に試料中のフェリチン量の増加は計数率の減少となる。即ち，両者の標準曲線は対称的な形となる。本測定法で用いた両キットはいずれも再現性，回収率，希釈試験において満足すべき成績であった。また，両キット間の測定値の相関性も良好であったが，IRMA 法は RIA 法に比べ，やや高値となる傾向が見られた。これは測定原理の差に加えて IRMA 法は肝フェリチンを，RIA 法は腎フェリチンをそれぞれ標準としている点に起因するものと推察される。

両測定キットは共に放射性元素 125I を用いられてお

り，有効期間が限定されるため，一般には検体を凍結保存しており，一度に測定する場合が多い。そこで試料保存期間のフェリチン測定値におよぼす影響について検討を行った。凍結状態（-20℃）で保存した場合，100 日以上で平均16％の低下が見られ，免疫抗原性は比較的安定であることが認められた。

健常人における血清フェリチン値は男性が女性に比べ平均値で2倍以上の高値を示し，有意な性差が見られた。これは諸家の報告とも一致する成績であった（ADISON ら1972，LIPSCHITZ ら1974，JACOBS ら1975，新津ら1979）。中部ヨーロッパでは，成人女性の10％以上に顕著な低値が見られると言われており（KALAT-WASSER 1980），また，わが国でも新津ら（1979）は健常人女性の平均11％に，特に春前後ではその30％以上に潜伏性の低値が見られる（血清フェリチン値 30 ng/ml 以下）が認められたと報告している。著者らの成績でも低フェリチン値は健常人の女性の21％，男性の5.9％に見られた。

慢性関節リウマチでは多くの場合，血清鉄の低下を伴う中等度の貧血を認めるとかかわらず，血清フェリチン値は高値を示した。従来，慢性関節リウマチの血清フェリチン値については BENTLEY ら（1974）の報告があり，慢性関節リウマチの血清中の高フェリチン値は肝臓の反映指標として理解することができる。

一方，関節液中のフェリチン値に関する報告は見あたらない。著者らは慢性関節リウマチと慢性関節リウマチについて検討を行ったが，いずれもその平均値は血清の場合の10倍以上の高値を示した。この異常高値については，この病因而論的意義を含めて興味深い課題である。

V 結語

放射免疫測定法（Immunoautoradiometric assay 法；IRMA 法，Radioimmunoassay 法；RIA 法）を用いて，血清，関節液中のフェリチンの測定を行ない以下の成績を得た。

① IRMA 法，RIA 法の両測定キットはいずれも再現性，回収率，希釈試験において満足すべき成績であった。また，両方法による測定値の間には r = 0.989 と良好な相関が見られた。

② 血清試料を－20℃で保存した場合100日以上で，測定値は平均16％の低下が見られた。

③ 健常人の血清フェリチン値は男性（34例）で131.4 ±52.1 ng/ml，女性（38例）で58.4±39.9 ng/ml で有意な性差を認めた。また，男性の5.9％，女性の21％に潜在性の鉄欠乏状態が見られた。

④ 慢性関節リウマチ患者の血清フェリチン値は男
性（10例）では337.0±293.4 ng/ml，女性（25例）では181.4±329.9 ng/ml で，両性とも健常人に比べ有意に高値を示した。

⑥ 慢性関節リウマチ患者（14例）の関節液中のフェリチン値は2894±3017 ng/ml と極めて高い値を示した。変形性関節症（12例）では1429±1005ng/ml で，両者の間に有意差を認めなかった。

本論文の要旨は「慢性関節リウマチ患者における血清および関節液中の ferritin 値」と題して，第19回日本血液学会中国四国地方会（昭和55年1月19日，岡山大学三朝分院）にて発表した。

文 献

加川英男，他，(1978) 悪性腫瘍と ferritin. 医学のあゆみ，106，259-265。


新津洋司郎，他，(1975) 血中 Ferritin の Radioimmunoassayによる悪性腫瘍の新しい免疫学的診断法，医学のあゆみ，95，12-14。

新津洋司郎，他，(1979) 血清 ferritin による潜在性鉄欠乏状態の診断，臨床血液，20，1-7。

漆崎一紀，(1976) 血液学における Ferritin の意義，日本血会誌，39，571–583。

DETERMINATION OF FERRITIN IN SERUM AND IN SYNOVIAL FLUIDS OF PATIENTS WITH RHEUMATOID ARTHRITIS.

Katsushi Furuno, Hiroshi Morinaga
Department of Internal Medicine, Misasa Branch Hospital, Okayama University Medical School,
and Shozo Irino
Department of Internal Medicine, Kagawa Medical School.

Abstract: Ferritin in sera and in synovial fluids were determined by method of immunoradiometric assay (IRMA) and of radioimmunoassay (RIA). These methods have been proved to be reproducible.

The coefficient variation was 7.4 to 9.9 % in IRMA and 5.6 to 8.0 % in RIA. There were a good correlation between methods of IRMA and of RIA (r=0.989).

The mean recovery rate of ferritin in serum was 101.2 % in IRMA and 101.0 % in RIA, respectively.

The determination of serum ferritin revealed a 16 % reduction in average after preservation at –20°C during over 100 days.

The levels of serum ferritin in healthy controls were 131.4±52.1 ng/ml in 34 males and 58.4±39.9 ng/ml in 38 females.

The sex differences were statistically significant (p<0.01). Ferritin levels were shown to be below 30 ng/ml (the state of iron deficiency) in 2 of 34 (5.9 %) males and in 8 of 38 (21 %) females of healthy controls.

The levels of serum ferritin in patients with rheumatoid arthritis (RA) were 337.0±293.4 ng/ml in 10 males and 181.4±329.9 ng/ml in 25 females. The serum ferritin in RA was significantly higher than in healthy controls of both sexes.

The levels of ferritin in synovial fluids of patients with 14 RA and with 12 osteoarthritis were 2894±3017 ng/ml and 1429±1005 ng/ml, and no differences were observed in both groups.