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Hyperaccurate Ellipse Fitting without Iterations
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This paper presents a new method for fitting an ellipse to a point sequence extracted from images.
It is widely known that the best fit is obtained by maximum likelihood. However, it requires
iterations, which may not converge in the presence of large noise. Our approach is algebraic distance
minimization; no iterations are required. Exploiting the fact that the solution depends on the
way the scale is normalized, we analyze the accuracy to high order error terms with the scale
normalization weight unspecified and determine it so that the bias is zero up to the second order.
We demonstrate by experiments that our method is superior to the Taubin method, also algebraic

and known to be highly accurate.

1. INTRODUCTION

Circular objects are projected onto camera images
as ellipses, and from their 2-D shapes one can recon-
struct their 3-D structure [11]. For this reason, de-
tecting ellipses in images and computing their mathe-
matical representation are the first step of many com-
puter vision applications including industrial robotic
operations and autonomous navigation. This is done
in two stages, although they are often intermingled.
The first stage is to detect edges, test if a particular
edge segment can be regarded as an elliptic arc, and
integrate multiple arcs into ellipses [15, 23]. The sec-
ond stage is to fit an equation to those edge points
regarded as constituting an elliptic arc. In this paper,
we concentrate on the latter.

Among many ellipse fitting algorithms presented
in the past, those regarded as the most accurate are
methods based on maximum likelihood (ML), and
various computational schemes have been proposed
including the FNS (Fundamental Numerical Scheme
of Chojnacki et al. [5], the HEIV (Heteroscedastic
Errors-in-Variable of Leedan and Meer [18] and Matei
and Meer [19], and the projective Gauss-Newton iter-
ations of Kanatani and Sugaya [16]. Efforts have also
been made to make the cost function more precise [17]
and add a posterior correction to the solution [13],
but the solution of all ML-based methods already at-
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tains the theoretical accuracy bound, called the KCR
lower bound [4, 12, 14], up to high order error terms.
Hence, there is practically no room for further accu-
racy improvement. However, all ML-based methods
have one drawback: Iterations are required for non-
linear optimization, but they often do not converge
in the presence of large noise. Also, an appropriate
initial guess must be provided. Therefore, accurate
algebraic methods that do not require iterations are
very much desired, even though the solution may not
be strictly optimal. The best known algebraic method
is the least squares, also known as algebraic distance
minimization or DLT (direct linear transformation)

[10).

All algebraic fitting methods have an inherent
weakness: We need to impose a normalization to re-
move scale indeterminacy, but the solution depends
on the choice of the normalization. Recently, Al-
Sharadqah and Chernov [2] and Rangarajan and
Kanatani [21] focused on this freedom for fitting
circles. Invoking the high order error analysis of
Kanatani [14], they optimized the normalization so
that the solution has the highest accuracy. In this
paper, we apply their techniques to ellipse fitting.
Doing numerical experiments, we demonstrate that
our method is superior to the Taubin method [24],
also an algebraic method known to be very accurate
(14, 16].
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Figure 1: Fitting an ellipse to a point sequence.

2. ALGEBRAIC FITTING OF ELLIPSES
An ellipse is represented by
Ax® + 2Bxy + Cy® + 2fo(Dx + Ey) + fEF =0, (1)

where fj is a scale constant that has an order of z and
y; without this, finite precision numerical computa-
tion would incur serious accuracy loss'. Our task is
to compute the coefficients A, ..., F' so that the ellipse
of Eq. (1) passes through given points (4, ¥Ya), @ =
1, ..., N, as closely as possible (Fig.1). The algebraic
approach is to compute A, ..., F' that minimize the
algebraic distance

N
1
== (Axi+2Ba:aya+Cy3+2 fo(Dao+Eya)
Na:l

2
+3F) . 2)
This is also known as the least squares, algebraic dis-
tance minimization, or the direct linear transforma-
tion (DLT). Evidently, Eq. (2) is minimized by A =
-+ = F = 0 if no scale normalization is imposed.
Frequently used normalizations include

F=1, (3)

A+D=1, (4)

A2+ B>+ C?+D*+ E*+ F? =1, (5)
A2+ B>+ C?+ D* + E? =1, (6)
A% 4+2B* + C? =1, (7)

AC - B? =1. (8)

Equation (3) reduces minimization of Eq. (2) to si-
multaneous linear equations [1, 6, 22]. However,
Eq. (1) with FF = 1 cannot represent ellipses pass-
ing through the origin (0,0). Equation (4) remedies
this [8, 22]. The most frequently used is? Eq. (5) [20],
but some authors use Eq. (6) [9]. Equation (7) im-
poses invariance to coordinate transformations in the

n our experiments, we set fo = 600, assuming images of
one side less than 1000 pixels.

2Some authors write an ellipse as Az2 4+ Bxy+ Cy? + Dz +
Ey + F = 0. The meaning of Eq. (5) differs for this form and
for Eq. (1). In the following, we ignore such small differences;
no significant consequence would result.
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sense that the ellipse fitted after the coordinate sys-
tem is translated and rotated is the same as the origi-
nally fitted ellipse translated and rotated accordingly
[3]. Equation (8) prevents Eq. (1) from representing a
parabola (AC —B? = 0) or a hyperbola (AC—B? < 0)
[7]. Many other normalizations are conceivable, but
the crucial fact is that the resulting solution depends
on which normalization is imposed. The purpose of
this paper is to find the “best” normalization. Write
the 6-D vector of the unknown coefficients as

u=(A B ¢ D E F)', (9)

and consider the class of normalizations written as

(u, Nu) = constant, (10)
for some symmetric matrix IN, where and hereafter
we denote the inner product of vectors a an b by
(a,b). Equations (5), (6), and (7) can be written in
this form with a positive definite or semidefinite IV,
while for Eq. (8) IN is nondefinite. In this paper,
we also allow nondefinite IV, so that the constant in
Eq. (10) is not necessarily positive.

3. ALGEBRAIC SOLUTIONS

If the weight matrix IV is given, the solution u that
minimizes Eq. (1) is immediately computed. Write

e=(22 22y o 2fox 26y f2) . (11)

Equation (1) is now written as
(u, &) = 0.

Let &, be the value of £ for (z4,ys). Our problem is
to minimize

(12)

1 Y 1 &
J = N Z(u’ga)2 = N Z’U/Téaég’u, = (U,MU),
a=1 a=1

(13)
subject to Eq. (10), where we define the 6 x 6 matrix
M as follows:

M- 2 3 T 14
_Naglgaga' ( )

Eq. (13) is a quadratic form in wu, so it is minimized
subject to Eq. (10) by solving the generalized eigen-
value problem

Mu = ANu. (15)

If Eq. (1) is exactly satisfied for all (z4,¥ya), i.e.,
(u,&,) =0 for all o, Eq. (14) implies Mu = 0 and
hence A = 0. If the weight IN is positive definite
or semidefinite, the generalized eigenvalue A is posi-
tive in the presence of noise, so the solution is given
by the generalized eigenvector u for the smallest .
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Here, we allow IN to be nondefinite, so A may not
be positive. In the following, we do error analysis of
Eq. (15) by assuming that A ~ 0, so the solution is
given by the generalized eigenvector u for the A\ with
the smallest absolute value®. Since the solution u of
Eq. (15) has scale indeterminacy, we hereafter adopt
normalization into unit norm: |ju|| = 1.

The resulting solution may not necessarily repre-
sent an ellipse; it may represent a parabola or hyper-
bola. This can be avoided by imposing Eq. (8) [7],
but here we do not exclude nonellipse solution and
optimize IN so that the resulting solution u is close
to its true value u.

Least squares. In the following, we call the popu-
lar method of using Eq. (5) the least squares for
short. This is equivalent to letting IN to be the
unit matrix I. Then, Eq. (15) becomes an ordi-
nary eigenvalue problem

Mu = \u, (16)

and the solution is the unit eigenvector of M for
the smallest eigenvalue.

Taubin method. A well known algebraic method
known to be very accurate is due to Taubin [24],
who used as N

l‘i Tala 0 fOxoz 0 0
Tala Cb‘i +yi TaYa foya fOxa 0

4 Y 0 TalYa y?x 0 foya O
Ne=x 2| fsa fowe O 7 0 0
- 0 fOxa foya 0 fg 0
0 0 0 0 0 0

(17)

The solution is given by the unit generalized
eigenvector u of Eq. (15) for the smallest gen-
eralized eigenvalue .

4. ERROR ANALYSIS

We regard each (z,ya) as perturbed from its true
position (Z4,Ta) by (Azy, Ay,) and write
604 = éa + Alga + AZ&OU (18)

where &, is the true value of £, and A;§,,, and Ax€,,
are the noise terms of the first and the second order,
respectively:

2T Az, Az?
220 AYa+27a A, QA%QAZ/@
_ 2YaAYa _| A
Alsa_ 2fOAxa 3 AQSQ— 0
2f0Aya 0
0 0
(19)

31In the presence of noise, M is positive definite, so (u, Mu)
> 0. If (u, Nu) < O for the final solution, we have A < 0.
However, if we replace N by —IN, we obtain the same solution
w with A > 0, so the sign of A\ does not have a particular
meaning.
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The second term A€, is ellipse specific and was not
considered in the general theory of Kanatani [14].
We define the covariance matrix of €, by V[€,] =
E[A1€,A1€]], where E[-] denotes expectation. If
the noise terms Az, and Ay, are regarded as inde-
pendent random Gaussian variables of mean 0 and
standard deviation o, we obtain

V[E.] = E[A€, A1) = o? Vo[l (20)
where we put
ji jaga 0 fOi'a 0 0
i‘aga ji + ggc jaga nya fO-fa 0
_ 0 fa% 37(21 0 nga 0
Voleal =41 pz foge 0 £2 0 0
0 fOi'oz ngoz 0 fg 0
0 0 0 0 0 0
(21)

Here, we have noted that E[Az,] = E[Ay,] = 0,
E[Ax2] = E[Ay2] = 02, and E[Az,Ay,] = 0 accord-
ing to our assumption. We call the above Vj[€,] the
normalized covariance matriz. Comparing Eqs. (21)
and (17), we find that the Taubin method uses as N

1 N
Nt = NZ%[&&]’ (22)

after the observations (z,,y,) are plugged into
(Zas Ya)-
5. PERTURBATION ANALYSIS

Substituting Eq. (18) into Eq. (14), we have

N
1 _ _
M ~ N;@a+Alsa+A2£a><sa+A1£Q+AQ£Q>T
=M +A M+ Ay M+ -, (23)
where --- denotes noise terms of order three and

higher, and we define M, A; M, and Ay M by

m-Ly el (24)
a=1
1 s =T
MM = ;(samel AL ), (25)

N
AQMZ;(;(ﬁaAﬁI FALEMET T A0kEL).
(26)

We expand the solution u and A of Eq. (16) in the
form

w=u+A utAgut- -, A=AFA AN -+, (27)
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where the barred terms are the noise-free values, and
symbols A; and As indicate the first and the sec-
ond order noise terms, respectively. Substituting
Egs. (23) and (27) into Eq. (15), we obtain

= A+ADNFA N+ )N (a+Aju+Aou+---). (28)

Expanding both sides and equating terms of the same
order, we obtain

M1u = \Nu, (29)

MA1U+A1M’& = S\NAl’U,"f‘Al)\N’l_L, (30)

MAQU + AlMAlu + AQM’I]
= ANAsu + A ANAju + A ANa.  (31)

The noise-free values £, and u satisfy (€, @) = 0, so
Eq. (24) implies M = 0, and Eq. (29) implies A = 0.
From Eq. (25), we have (4, A;Ma) = 0. Computing
the inner product of w and Eq. (30), we find that Ay A
= 0. Multiplying Eq. (30) by the pseudoinverse M
from left, we have

Aju=—-M A, Mau, (32)

where we have noted that w is the null vector of M
(i.e., Mu = 0) and hence M~ M (= Pj) represents
orthogonal projection along w. Substituting Eq. (32)
into Eq. (31), we can express AgA in the form

(w, AoMa) — (u, A\MM ™~ Ay M1u)
Ao\ = ———
(u, Nu)
_ (u,Tu)
- (u,Nu)’ (33)
where
T =AM —A MM A/M. (34)

Next, we consider the second order error Asu.
Since w is a unit vector and does not change its norm,
we are interested in the error component orthogonal
to @. We define the orthogonal component of Asu by

AQUJ_ = PﬂAQU (: MiMAQ’U,) (35)
Multiplying Eq. (31) by M~ from left and substitut-
ing Eq. (32), we obtain

Asut = A)DAM Nuau+ M AMM AMaua
—-M A;Ma
_ (u,Tu)

=>"2""M Nu-M Tu
@ Na) u— u. (36)
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6. COVARIANCE AND BIAS

6.1 General Algebraic Fitting

From Eq. (32), we see that the leading term of the
covariance matrix of the solution w is given by

Viu] = E[Ajulu']
= M E[(A Mu)(A;Mu) |M~

R >
= M E[ Z (Ags, u) }
a=1 B=1
1 - T T
= =M Y (u, E[AEAESw)E, &) M
a,f=1
0,2 _ N - -T _
= M (3w VolE o ) M
o
= M MM (37)
were we define
., 1 & —
M=) (w. Vo€ Juéat, (38)
a=1

In the derivation of Eq. (37), we have noted that &, is
independent for different o and that E[A1£QA1£;] =
8050 Vo[€,], where 6,5 is the Kronecker delta. The
important observation is that the covariance matrix
V]u] of the solution u does not depend on the nor-
malization weight IN. This implies that all algebraic
methods have the same the covariance matriz in the
leading order, so we are unable to reduce the covari-
ance of h by adjusting IN. Yet, the Taubin method is
known to be far accurate than the least squares. We
will show that this stems from the bias terms and that
a superior method can result by reducing the bias.

Since E[Aju] = 0, there is no bias in the first
order: the leading bias is in the second order. In
order to evaluate the second order bias E[Asut], we
evaluate the expectation of T in Eq. (34). We first
consider the term E[A;M]. From Eq. (26), we see
that

N
Fl8oM] =+ 37 (€, B1808,]T + FlAE,Mg]]

AQ&O{]E(I)
02 N = T =T
=N Z(&ﬂlg + Volé.] + elsfa)
a=1

= o? (N +25[E.els]), (39)

where we have noted the definition in Eq. (20) and
used Eq. (22). The symbol S[-] denotes symmetriza-
tion (S[A] = (A + A")/2), and the vectors £, and
e13 are defined by
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N
_ 1 _ T
SC:N;&“ e3=(101000) (40)
We next consider the term E[A; MM~ Ay M]. Tt has
the form (see Appendix for the derivation)

EAMM ™ AM] = 2 Z(trM Vol€alIE &

(€ MTENVOIEL] +2SIVol€,IM T E,E]).

where tr[-] denotes the trace. From Egs. (39) and
(41), the matrix T in Eq. (34) has the following ex-
pectation:

Thus, the second order error Asu™t
the following bias:

in Eq. (36) has

ElAut] = ) Na - E[T]ﬁ). (43)

T)u
(ﬁ Nu)
6.2 Least Squares

Eq. (42) implies (€.,4) = 0 and (§,,4) = 0. Hence,
E[T)u can be written as

E[T)a = o® (NTa +(A+ O,

N

> (& M EVile Ju

a=1
(@, Vol€, M E,)E, ).

If we let N = I, we obtain the least squares fit. Its
leading bias is

1
-3

(44)

E[Aout] = M~ ((@E[T]ﬁ)ﬂ - E[T]ﬁ)

=-M (I-au")E[T)a=—-M E[T)a, (45)
where we have used the following equality:
M (I—aa")=M Pu—M MM =M~ (46)

From Eqs. (44), and (45), the leading bias of the least
square has the following form:

ElAsut] = —a*M~ (Nru+ (4+ O),

1 N

~7 2 (€ M el u

+<a,vo_[sa]Msa>sa)). (47)
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6.3 Taubin Method

Eq. (44) implies (€.,u) = 0 and (§,,u) = 0. Hence,
(u, E[T]u) can be written as

(u, E[Tu)

]

T
1 N
=0 ((@, Nrt) = 15 > (€0 M &) (@ VolE, )
a=1
= o? (@, Nva)— <> Y IV € €0 (@, Vole, )
a=1
1 . S
= (@, Novw) - 550e{M ™Y (@ VoleaJwg.Ea))

2
o2 (@, Ntat) — %tr[]\‘/[’]\‘/['},

where we have used Eq. (38). If we let N = N, we
obtain the Taubin method. Thus, the leading bias of
the Taubin fit has form

BlAyut] = —a*M " (aNra+ (A + C)E,

1N/
_WZ<(£aaM_€a)VO[£a}a
a=1

@ lE M E)E, ). (49)
where we put

1 te[M M|

" N (a,Nrta) (50)

Comparing Eqgs. (49) and (47), we notice that the
only difference is that Npu in Eq. (47) is replaced
by ¢Nru in Eq. (49). We see from Eq. (50) that ¢ <
1 when N is large. This can be regarded as one of the
reasons of the high accuracy of the Taubin method,
as already pointed out by Kanatani [14].

6.4 Hyperaccurate Algebraic Fit

Now, we present our main contribution of this paper.
Our proposal is to chose the weight IN to be

N=Nr+2S[E,el]- NQZ(trM Vol€,l1E.€

+(Eas M E,)VolE,]+2S[Vh€,IM ™ E,E1]). (51)

Then, we have E[T] = 0?N from Eq. (42),
Eq. (43) becomes

(u, Nu)

E[Aout] = 02 M~ (m

N - N)u =0. (52)
Since Eq. (51) contains the true values £, and M, we
evaluate them by replacing the true values (Za, ¥a)
in their definitions by the observations (24, ¥o ). This
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(a)
Figure 2: (a) 31 points on an ellipse. (b) Instances of
fitted ellipses for o = 0.5. 1. Least squares. 2. Taubin
method. 3. Proposed method. 4. Maximum likelihood.
The true shape is indicated in dashed lines.

(b)

Au
—>

Figure 3: The true value @, the computed value u, and
its orthogonal component Au to u.

does not affect our result. In fact, if we replace IN in
Eq. (28) by N+ A;N + AN + -, the terms A; N
and AN do not appear in the subsequent analysis
because the right-hand side of Eq. (28) is O(0?). Also,
note that only the expectation of T' appears on the
right-hand side of Eq. (43). Since expectations of
odd-order error terms vanish, the error in Eq. (52) is
at most O(o*). Thus, the second order bias is exactly
0. After the term used by Al-Sharadgah and Chernov
[2] for their circle fitting method, we call our method
using Eq. (51) “hyperaccurate algebraic fitting”.

7. NUMERICAL EXPERIMENTS

We placed 31 equidistant points in the first quad-
rant of the ellipse shown in Fig. 2(a). The major and
the minor axis are 100 and 50 pixel long, respectively.
We added to the x- and y-coordinates of each point
independent Gaussian noise of mean 0 and standard
deviation o and fitted an ellipse by least squares, the
Taubin method, our proposed method, and maximum
likelihood*. Figure 2(b) shows fitted ellipses for some
noise instance of o = 0.5.

Since the computed and the true values u and u
are both unit vectors, we define their discrepancy Au
by the orthogonal component

Au = Pyu, (53)

where Py (= I — wu) is the orthogonal projection
matrix along @. (Fig. 3). Figures 4(a) and (b) plot
for various o the bias B and the RMS (root-mean-
square) error D defined by

10000

= Hmooo Z Au

4We used the FNS of ChO_]IlaCkl et al. [5]. See [16] for the
details.

@1l
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0.3
0.2r 1 2 3
/4 4
a"&- - =
e
QAP y o
T % 02 04 06 08
06 08 . ; 6 40

Figure 4: The bias (a) and the RMS error (b) of the fit-
ting to the data in Fig. 2(a). The horizontal axis is for the
standard deviation o of the added noise. 1. Least squares.
2. Taubin method. 3. Proposed method. 4. Maximum
likelihood (interrupted due to nonconvergence). The dot-
ted line in (b) shows the KCR lower bound.

10000

oo 2 14wl 60

where ©(® is the solution in the ath trial. The dotted
line in Fig. 2(c) shows the KCR lower bound [12, 14]
given by

€ula

@ VolE] (55)

uMz

DKCR =0 ( )) ]
Standard linear algebra routines for solving the
generalized eigenvalue problem in the form of Eq. (15)
assumes that the matrix IN is positive definite. As
can be seen from Eq. (17), however, the matrix N
for the Taubin method is positive semidefinite hav-
ing a row and a column of zeros. The matrix N in
Eq. (51) is not positive definite, either. This causes
no problem, because Eq. (15) can be written as
Nu = (1/)\)Mu. (56)
Since the matrix M in Eq. (14) is positive definite for
noisy data, we can solve Eq. (56) instead of Eq. (15),
using a standard routine. If the smallest eigenvalue of
M happens to be 0, it indicates that the data are all
exact; any method, e.g., LS, gives an exact solution.
The perturbation analysis of Kanatani [14] is based
on the assumption that A ~ 0, so we compute the
unit generalized eigenvector for A with the smallest
absolute value. (or for 1/ with the largest absolute
value).

As we can see from Fig. 4(a), the least square so-
lution has a large bias, as compared to which the
Taubin solution has a smaller bias, and our solution
has even smaller bias. Since the least squares, the
Taubin, and our solutions all have the same covari-
ance matrix to the leading order, the bias is the deci-
sive factor for their relative accuracy. This is demon-
strated in Fig. 4(b): The Taubin solution is more
accurate than the least squares, and our solution is
even more accurate.
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edge segment (red). Right: Ellipses fitted to 155 edge
points overlaid on the original image. From inner to outer
are the ellipses computed by least squares (pink), Taubin
method (blue), proposed method (red), and maximum

likelihood (green). The proposed and Taubin method
compute almost overlapping ellipses.

On the other hand, the ML solution has a larger
bias than our solution, as shown in Fig. 4(a). Yet,
since the covariance matrix of the ML solution is
smaller than Eq. (38) [14], it achieves a higher accu-
racy than our solution, as shown in Fig. 4(b). How-
ever, the ML computation may not converge in the
presence of large noise. Indeed, the interrupted plots
of ML in Figs. 2(a) and (b) indicate that the iter-
ations did not converge beyond that noise level. In
contrast, our method, like the least squares and the
Taubin method, is algebraic, so the computation can
continue for however large noise.

The left of Fig. 5 is an edge image where a short
elliptic arc (red) is visible. We fitted an ellipse to the
155 consecutive edge points on it by least squares,
the Taubin method, our method, and ML. The right
of Fig. 5 shows the resulting ellipses overlaid on the
original image. We can see that the least squares
solution is very poor, while the Taubin solution is
close to the true shape. Our method and ML are
slightly more accurate, but generally the difference is
very small when the number of points is large and the
noise is small as in this example.

8. CONCLUSIONS

We have presented a new algebraic method for fit-
ting an ellipse to a point sequence extracted from im-
ages. The method known to be of the highest accu-
racy is maximum likelihood, but it requires iterations,
which may not converge in the presence of large noise.
Also, an appropriate initial must be given. Our pro-
posed method is algebraic and does not require iter-
ations.

The basic principle is minimization of the algebraic
distance. However, the solution depends on what
kind of normalization is imposed. We exploited this
freedom and derived a best normalization in such a
way that the resulting solution has no bias up to the
second order, invoking the high order error analysis
of Kanatani [14]. Numerical experiments show that
our method is superior to the Taubin method, also an
algebraic method and known to be very accurate.
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Appendix

The expectation E[A; MM ~ A;M] is computed
as follows:
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