Asymptotic convergence analysis of the proximal point algorithm for metrically regular mappings

Shin-ya Matsushita and Li Xu
Department of Electronics and Information Systems
Faculty of Systems Sciences and Technology
Akita Prefectural University
84-4 Ebinokuchi Tsuchiya, Yurihonjo City, Akita, 015-0055 JAPAN
email:matsushita@akita-pu.ac.jp (Shin-ya Matsushita)
e-mail:xuli@akita-pu.ac.jp (Li Xu)

Abstract—This paper studies convergence properties of the proximal point algorithm when applied to a certain class of nonmonotone set-valued mappings. We consider an algorithm for solving an inclusion \(0 \in T(x) \), where \(T \) is a metrically regular set-valued mapping acting from \(\mathbb{R}^n \) into \(\mathbb{R}^m \). The algorithm is given by the following iteration: \(x_0 \in \mathbb{R}^n \) and

\[
x_{k+1} = \alpha_k x_k + (1 - \alpha_k) y_k, \quad \text{for} \quad k = 0, 1, 2, \ldots,
\]

where \(\{\alpha_k\} \) is a sequence in \([0, 1]\) such that \(\alpha_k \leq \delta < 1 \), \(g_k \) is a Lipschitz mapping from \(\mathbb{R}^n \) into \(\mathbb{R}^m \) and \(y_k \) satisfies the following inclusion

\[
0 \in g_k(y_k) - g_k(x_k) + T(y_k).
\]

We prove that if the modulus of regularity of \(T \) is sufficiently small then the sequence generated by our algorithm converges to a solution to \(0 \in T(x) \).

I. INTRODUCTION

We deal in this paper with methods for finding zeroes of set-valued mappings in Euclidean spaces, i.e., given Euclidean spaces \(\mathbb{R}^n \) and \(\mathbb{R}^m \) and a set-valued mapping \(T : \mathbb{R}^n \to 2^{\mathbb{R}^m} \), we study the convergence of iterative method for solving the inclusion

\[
0 \in T(x).
\]

Our study is devoted to metrically regular mappings, and we present an algorithm to solve (I.1), which is constructed on the basis of the classical proximal point algorithm [15]. The proximal point was first proposed by Martinet [12] and attained its current formulation in the works of Rockafellar [15], where its connection with the augmented Lagrangian method for constrained nonlinear optimization. In particular, Rockafellar studied the proximal point algorithm for the case when \(H \) is a Hilbert space and \(T \) is a monotone set-valued mapping from \(H \) into itself and showed that when \(x_{k+1} \) is an approximate solution of the following proximal point iteration, i.e.,

\[
0 \in \mu_k (x_{k+1} - x_k) + T(x_{k+1}) \quad \text{for} \quad k = 0, 1, 2, \ldots,
\]

and \(T \) is maximal monotone, then for a sequence of positive scalars \(\mu_k \) the iteration (I.2) produces a sequence \(x_k \) that is convergent to a solution to \(0 \in T(x) \) for any starting point \(x_0 \in H \). When \(T \) is monotone, i.e.,

\[
\langle x - y, u - v \rangle \geq 0,
\]

for all \(x, y \in H \), all \(u \in T(x) \) and all \(v \in T(y) \), and furthermore maximal monotone, i.e., \(T = T' \) whenever \(T' : H \to 2^H \) is monotone and \(T(x) \subset T'(x) \) for all \(x \in H \), it follows from Minty’s theorem (see [13]) that \((I + \gamma T) \) is onto and \((I + \gamma T)^{-1} \) is single valued for all positive \(\gamma \in \mathbb{R} \), so that the sequence defined by (I.2) is well defined.

In the past three decades, a number of authors have considered generalizations and modifications of the proximal point algorithm and have also found applications of this method to specific variational problems (see, for examples, [3], [14], [9], [16], [8], [10], [11], [1], [2]). In particular, the convergence to a zero point of a maximal monotone set-valued mapping \(T \) of the sequence

\[
x_{k+1} = \alpha_k x_k + (1 - \alpha_k)(I + \gamma_k T)^{-1}x_k \quad \text{for} \quad k = 0, 1, 2, \ldots,
\]

(1.3) was observed by Eckstein and Bertsekas [3] (see also [9]), who showed that the sequence \(\{x_k\} \) generated by (I.3) converges weakly to a solution \(0 \in T(x) \) in the case that \(\inf \alpha_k > -1 \), \(\sup \alpha_k < 1 \) and \(\inf \gamma_k > 0 \).

On the other hand, the situation becomes considerably more complicated when \(T \) fails to be monotone. A new approach to the subject was taken in [14], which deals with a class of nonmonotone mappings that, when restricted to a neighborhood of the solution set, are not far from being monotone. More recently, Aragon, Donchev and Geoffroy [1] considered the following proximal point algorithm for a certain class of a nonmonotone set-valued mappings.

\[
0 \in g_k(x_{k+1} - x_k) + T(x_k), \quad \text{for} \quad k = 0, 1, 2, \ldots,
\]

where \(g_k \) is a sequence of functions. They proved that if \(\bar{x} \) is a solution of (I.1) and the mapping \(T \) is metrically regular at \(\bar{x} \) for 0 with locally closed graph near \((\bar{x}, 0) \), then there exists a neighborhood \(O \) of \(\bar{x} \) such that for each initial point \(x_0 \in O \) one can find a sequence \(x_k \) satisfying (I.4) that is convergent to \(\bar{x} \).
In this paper, motivated by (I.3) and (I.4), we will consider the following algorithm for finding zeroes of a metrically regular set-valued mapping. Given \(x_0 \in \mathbb{R}^n \), find \(x_k \) such that
\[
x_{k+1} = \alpha_k x_k + (1-\alpha_k)y_k, \quad \text{for } k = 0, 1, 2, \ldots, (I.5)
\]
where \(\{\alpha_k\} \) is a sequence in \([0, 1]\) such that \(\alpha_k \leq \bar{\alpha} < 1 \), \(g_k \) is a sequence of Lipschitz mappings and \(y_k \) satisfies the following inclusion
\[
0 \in g_k(y_k) - g_k(x_k) + T(y_k). \quad (I.6)
\]
We show that if \(\bar{x} \) is a solution of (I.1) and the mapping \(T \) is metrically regular at \(\bar{x} \) for 0 with locally closed graph near \((\bar{x}, 0)\), then there exists a neighborhood \(O \) of \(\bar{x} \) such that for each initial point \(x_0 \in O \) one can find a sequence \(x_k \) satisfying (I.5) that is convergent to \(\bar{x} \).

II. PRELIMINARIES

Let \(\mathbb{R}^n \) be a Euclidean space, let \(S \) be a set-valued mapping from \(\mathbb{R}^n \) into the subsets of \(\mathbb{R}^m \), denoted \(S : \mathbb{R}^n \rightarrow 2^{\mathbb{R}^m} \). Let \((\bar{x}, \bar{y}) \in G(S)\). Here, \(G(S) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m : y \in S(x)\} \) is the graph of \(S \). Let \(A, B \subset \mathbb{R}^n \) and \(x \in \mathbb{R}^n \). The distance from a point \(x \) to a set \(A \) is defined by
\[
d(x, A) = \inf_{y \in A} \rho(x, y)
\]
and the Hausdorff semidistance from \(B \) to \(A \) is defined by
\[
e(B, A) = \sup_{x \in B} d(x, A).
\]
We denote by \(B_r(a) \) the closed ball of radius \(r \) centered at \(a \), and \(S^{-1} \) is the inverse of \(S \) defined as \(x \in S^{-1}(y) \Leftrightarrow y \in S(x) \). We say that a set \(A \) is locally closed at \(z \in A \) if there exists \(\gamma > 0 \) such that the set \(A \cap B_\gamma(z) \) is closed.

Let \(L > 0 \). A mapping \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be Lipschitz continuous if
\[
\|g(x) - g(y)\| \leq L\|x - y\| \quad \text{for all } x, y \in \mathbb{R}^n.
\]
In this case, \(L \) is called the Lipschitz constant of \(g \). The mapping \(S \) is said to be metrically regular at \(\bar{x} \) for \(\bar{y} \) if there exists a constant \(\kappa > 0 \) such that
\[
d(x, S^{-1}(y)) \leq \kappa d(y, S(x)), \quad \text{for all } (x, y) \text{ close to } (\bar{x}, \bar{y}). \quad (I.II)
\]
The infimum of \(\kappa \) for which (II.1) holds is the regularity modulus denoted \(reg(S(\bar{x}|\bar{y})) \); the case when \(S \) is not metrically regular at \(\bar{x} \) for \(\bar{y} \) corresponds to \(reg(S(\bar{x}|\bar{y})) = \infty \). The inequality (II.1) has direct use in proving an estimate for how far a point \(x \) is from being a solution to the variational inclusion \(y \in S(x) \); the expression \(d(y, S(x)) \) measures the residual when \(y \notin S(x) \). Smaller values of \(\kappa \) correspond to more favorable behavior. For recent advances on metric regularity and applications to variational problems, see [7], [5] and [6].

We state the following set-valued generalization of the Banach fixed point theorem proved by Donchev and Hager [4] in a complete metric space that we employ to prove our main result (Theorem 3.2).

Lemma 2.1: (Donchev and Hager [4]) Let \((X, \rho)\) be a complete metric space and \(\Phi : X \rightarrow 2^X \) be a set-valued mapping. Let \(\bar{x} \in X \), \(\alpha > 0 \) and \(0 \leq \theta < 1 \) such that \(\Phi(x) \cap B_\alpha(\bar{x}) \) is closed for all \(x \in B_\alpha(\bar{x}) \) and the following conditions hold:
\[
\begin{align*}
(i) & \quad d(\bar{x}, \Phi(\bar{x})) \leq \alpha(1-\theta) \\
(ii) & \quad e(\Phi(u) \cap B_\alpha(\bar{x}), \Phi(v)) \leq \theta \rho(u, v) \quad \text{for all } u, v \in B_\alpha(\bar{x}).
\end{align*}
\]
Then there exists \(x_0 \in B_\alpha(\bar{x}) \) such that \(x_0 \in \Phi(x_0) \).

III. CONVERGENCE THEOREM

First, we recall the algorithm we consider to solve (I.1). Given a starting point \(x_0 \), find a sequence \(x_k \) by applying the iteration
\[
x_{k+1} = \alpha_k x_k + (1-\alpha_k)y_k, \quad \text{for } k = 0, 1, 2, \ldots,
\]
where \(\{\alpha_k\} \) is a sequence in \([0, 1]\) such that \(\alpha_k \leq \bar{\alpha} < 1 \), \(g_k \) is a sequence of Lipschitz mappings and \(y_k \) satisfies the following inclusion
\[
0 \in g_k(y_k) - g_k(x_k) + T(y_k).
\]
The main result of this section reads as follows:

Theorem 3.1: Let \(T : \mathbb{R}^n \rightarrow 2^{\mathbb{R}^m} \) be a set-valued mapping and \(\bar{x} \in T^{-1}(0) \). Assume that \(G(T) \) is locally closed at \((\bar{x}, 0)\) and \(T \) is metrically regular at \(\bar{x} \) for 0. Choose a sequence of functions \(g_k : \mathbb{R}^n \rightarrow \mathbb{R}^m \) with \(g_k(0) = 0 \) which are Lipschitz continuous in a neighborhood \(U \) of 0 and Lipschitz constants \(\lambda_k \) satisfying
\[
\sup_k \lambda_k \leq \frac{1}{2 \rho \rho T(\bar{x}|0)}.
\]
Then there exists a neighborhood \(O \) of \(\bar{x} \) such that for any \(x_0 \in O \) there exists a sequence \(\{x_k\} \) generated by (I.5) and (I.6) is well-defined and \(\{x_k\} \) converges to \(\bar{x} \).

Proof: We first show that well-definedness of the sequence generated by our algorithm.

Let \(\lambda = \sup_k \lambda_k \), then from (III.1) there exists \(\kappa > \rho \rho T(\bar{x}|0) \) such that \(\kappa \lambda < \frac{1}{2} \) and
\[
d(x, T^{-1}(y)) \leq \kappa d(y, T(x)) \quad (III.2)
\]
for all \((x, y)\) close to \((\bar{x}, 0)\). Let \(\gamma > 0 \) be such that \((\kappa \lambda)^{-1} < \gamma < 1 \). From (III.2), there exists \(a > 0 \) such that the mapping \(T \) is metrically regular on \(B_\alpha(\bar{x}) \times B_{2\lambda a}(0) \) with constant \(\kappa \) and \(B_{2\lambda a}(0) \subset U \).

Let \(x_0 \in B_\alpha(\bar{x}) \). For any \(x \in B_\alpha(\bar{x}) \), we have
\[
\| (g_0(x) - g_0(x_0)) \| = \| g_0(x_0) - g_0(x) \| \leq \lambda_0 \| x_0 - x \| \leq 2\lambda_0 a \leq 2\lambda a.
\]
We will show that the mapping \(\phi_0(y) = T^{-1}(g_0(y) - g_0(x_0)) \) satisfies the assumptions of the fixed point result in Lemma 2.1. First, by using the assumptions that \(T \) is
metrically regular at \(\bar{x} \) for \(0, 0 \in T(\bar{x}) \) and \(g_k(0) = 0 \), we have
\[
dist(\bar{x}, \phi_0(\bar{x})) = \dist(\bar{x}, T^{-1}((-g_0(\bar{x}) - g_0(x)))) \\
\leq \kappa d((-g_0(\bar{x}) - g_0(x)), T(\bar{x})) \\
\leq \kappa \|g(x_0) - g(\bar{x})\| \\
\leq \kappa \lambda_0 \|x_0 - \bar{x}\| \\
\leq \kappa \lambda_0 a \\
< a(1 - \kappa \lambda_0).
\]
Further, for any \(u, v \in B_\alpha(\bar{x}) \), by the metric regularity of \(T \),
\[
e(\phi_0(u) \cap B_\alpha(\bar{x}), \phi_0(v)) \\
= \sup_{x \in T^{-1}((-g_0(u) - g_0(x_0)) \cap B_\alpha(\bar{x}))} d(x, T^{-1}((-g_0(u) - g_0(x_0)))) \\
\leq \sup_{x \in T^{-1}((-g_0(u) - g_0(x_0)) \cap B_\alpha(\bar{x}))} \kappa d((-g_0(u) - g_0(x_0)), T(x)) \\
\leq \kappa \| - (g_0(u) - g_0(x_0)) - (-g_0(v) - g_0(x_0))\| \\
\leq \kappa \lambda_0 \| u - v \|.
\]
To apply Lemma 2.1, it remains to see that the sets \(\phi_0(y) \cap B_\alpha(\bar{x}) \) are closed for all \(y \in B_\alpha(\bar{x}) \). Keeping in mind that \(T \) is locally closed graph, adjusting \(a \) a needed, this can be easily shown. Hence by Lemma 2.1, there exists \(y_0 \in \phi_0(y_0) \cap B_\alpha(\bar{x}) \), that is
\[
y_0 \in B_\alpha(\bar{x}) \text{ and } 0 \in g_0(y_0) - g_0(x_0) + T(y_0).
\]
Let
\[
x_1 = \alpha_0 x_0 + (1 - \alpha_0) y_0.
\]
For any \(x \in B_\alpha(\bar{x}) \), we have
\[
\| - (g_1(x) - g_1(x_1))\| \\
\leq \lambda_1 \| x_1 - x \| \\
= \lambda_1 \| \alpha_0 x_0 + (1 - \alpha_0) y_0 - x \| \\
= \lambda_1 \| \alpha_0 (x_0 - \bar{x}) + (1 - \alpha_0) (y_0 - \bar{x}) + \bar{x} - x \| \\
\leq \lambda_1 \{ \alpha_0 \| x_0 - \bar{x} \| + (1 - \alpha_0) \| y_0 - \bar{x} \| + \| \bar{x} - x \| \} \\
\leq 2 \lambda_1 a \\
\leq 2 \lambda a.
\]
Let
\[
a_1 = \gamma \| x_1 - \bar{x} \|. \tag{3.3}
\]
Since \(\gamma < 1 \), we have \(a_1 < a \). We consider the mapping
\[
\phi_1(y) = T^{-1}((-g_1(y) - g_1(x_1))).
\]
By (3.3), the metric regularity of \(T \) and the choice of \(\gamma \),
\[
dist(\bar{x}, \phi_1(\bar{x})) \leq \dist(\bar{x}, T^{-1}((-g_1(\bar{x}) - g_1(x_1)))) \\
\leq \kappa d((-g_1(\bar{x}) - g_1(x_1)), T(\bar{x})) \\
\leq \kappa \| - (g_1(\bar{x}) - g_1(x_1))\| \\
\leq \kappa \lambda_1 \| x_1 - \bar{x} \| \\
\leq a_1 (1 - \kappa \gamma).
\]
For \(u, v \in B_{\alpha_1}(\bar{x}) \), again by the metric regularity of \(T \), we obtain
\[
e(\phi_1(u) \cap B_{\alpha_1}(\bar{x}), \phi_1(v)) \\
= \sup_{x \in \{T^{-1}((-g_1(u) - g_1(x_1)) \cap B_{\alpha_1}(\bar{x}))\}} d(x, T^{-1}((-g_1(u) - g_1(x_1)))) \\
\leq \sup_{x \in \{T^{-1}((-g_1(u) - g_1(x_1)) \cap B_{\alpha_1}(\bar{x}))\}} \kappa d((-g_1(u) - g_1(x_1)), T(x)) \\
\leq \kappa \| - (g_1(u) - g_1(x_1)) - (-g_1(v) - g_1(x_1))\| \\
\leq \kappa \lambda_1 \| u - v \|.
\]
Because \(\phi_1(y) \cap B_{\alpha_1}(\bar{x}) \) is closed for any \(y \in B_{\alpha_1}(\bar{x}) \), by Lemma 2.1, there exists \(y_1 \in \phi_1(y_1) \cap B_{\alpha_1}(\bar{x}) \), which by (3.3), satisfies
\[
\| y_1 - \bar{x} \| \leq \gamma \| x_1 - \bar{x} \|.
\]
Let
\[
x_2 = \alpha_1 x_1 + (1 - \alpha_1) y_1.
\]
It follows that
\[
\| x_2 - \bar{x} \| = \| \alpha_1 x_1 + (1 - \alpha_1) y_1 - \bar{x} \| \\
\leq \alpha_1 \| x_1 - \bar{x} \| + (1 - \alpha_1) \| y_1 - \bar{x} \| \\
\leq \alpha_1 \| x_1 - \bar{x} \| + \gamma (1 - \alpha_1) \| x_1 - \bar{x} \| \\
= (\alpha_1 + \gamma (1 - \alpha_1)) \| x_1 - \bar{x} \| \\
\leq ((1 - \gamma) \alpha + \gamma) \| x_1 - \bar{x} \|.
\]
The induction step is now clear. Let \(x_k \in B_{\alpha_k}(\bar{x}) \). Then for \(\alpha_k = \gamma \| x_k - \bar{x} \| \), by applying Lemma 2.1 to \(\phi_k : \ y \rightarrow T^{-1}((-g_k(y) - g_k(x_k))) \), we obtain the existence of \(y_k \in B_{\alpha_k}(\bar{x}) \) such that \(0 \in g_k(y_k) - g_k(x_k) + T(y_k) \). And hence,
\[
\| y_k - \bar{x} \| \leq \gamma \| x_k - \bar{x} \| \text{ for all } k = 1, 2, \ldots.
\]
Let
\[
x_{k+1} = \alpha_k x_k + (1 - \alpha_k) y_k.
\]
Thus, we establish that
\[
\| x_{k+1} - \bar{x} \| \leq ((1 - \gamma) \alpha + \gamma) \| x_k - \bar{x} \|.\tag{3.4}
\]
Since \((1 - \gamma) \alpha + \gamma < 1 - \gamma + \gamma = 1 \), the sequence \(x_k \) converges to \(\bar{x} \).

Note that if \(\alpha_k = 0 \) for all \(k = 0, 1, 2, \ldots \), then we can consider the following particular case of (1.5) and (1.6).
\[
0 \in g_k(x_{k+1}) - g_k(x_k) + T(x_{k+1}) \quad \text{for } k = 0, 1, 2, \ldots.
\]
Now, we are able to state the following result.

Theorem 3.2: Let \(T : \mathbb{R}^n \rightarrow 2^{\mathbb{R}^m} \) be a set-valued mapping and \(\bar{x} \in T^{-1}(0) \). Assume that \(G(T) \) is locally closed at \(\bar{x} \), \(0 \) and \(T \) is metrically regular at \(\bar{x} \) for \(0 \). Choose a sequence of functions \(g_k : \mathbb{R}^n \rightarrow \mathbb{R}^m \) with \(g_k(0) = 0 \) which are Lipschitz continuous in a neighborhood \(U \) of \(0 \) and Lipschitz constants \(\lambda_k \) satisfying
\[
\sup_k \lambda_k < \frac{1}{2 \text{reg} T(\bar{x})}.
\]
Then there exists a neighborhood \(O \) of \(\bar{x} \) such that for any \(x_0 \in O \) there exists a sequence \(\{x_k\} \) generated by (3.4) is well-defined and \(\{x_k\} \) converges to \(\bar{x} \).
ACKNOWLEDGMENT

The first author is supported by the Japan Society for the Promotion of Science as Grand-in-Aid for Young Scientists (B).

REFERENCES