実験的急性脳死における血清内無機物質の消長に就て

第2編
血清内クロール、ナトリウムの消長に就て

岡山大学医学部津田外科教室（主任：津田誠次教授）
講師 福田七生

[昭和31年4月22日受稿]

目次

第1章 緒 言
第2章 実験材料並に方法
  第1節 急性脳死病を起因する方法
  第2節 腦腫脹摘除並に対照犬を作る方法
第3節 採 血 法
第4節 クロール並にナトリウム定量方法
第5節 病理解剖所見並に分類
第3章 実験成績

第1章 緒 言

本研究は、脳の機能と血漿成分の関係を解析するため、脳死に際しての血漿成分の変動を調査することを目的として実験を行った。現行の脳死病の診断基準は、脳の機能が永久に消失することを示すものであり、これに伴って血漿成分の変動を観察することが重要である。脳死病の起因は、脳組織の障害によるものであり、これに伴って血漿成分が変動する。脳死病の病態を解明するために、血漿成分の変動を調査することが重要である。

第2章 実験材料並に方法

第1節 急性脳死病を起因する方法

第1編第2章にて記述した方法により、18kgの健康な成犬を用意し、じかに脳組織を摘除し、大脳動脈を切断して脳死を誘発した。これに伴って、血漿成分が変動する。

第2節 腦腫脹摘除並に対照犬を作る方法

第1編第2章にて記述した方法と同様である。脳腫脹を摘除し、摘除した脳を2重に巻いたものを使用し、脳腫脹を強く圧迫したが、これに伴って血漿成分が変動する。
十二指腸開口部附近は保険的に取扱い圧挫を避けて、膣切開は膝間左脚を切断した。

第3節 採 血
犬の下肢静脈又は予め露出した股静脈より絶対に溶血を起こさぬよう注意して、術前術後定時に穿刺採血し、直ちに速分離して血清を採取し、この血清についてクロール、ナトリウムの濃度を測定した。なお術前値は手術前日及び当日空腹時に、麻酔施行に先だって採血し、その平均値を採用した。

第4節 クロール並びにナトリウム定量方法
a) クロール定量法（silver-iodate method）234)
試 薬
1. 水ウオルフラム酸溶液
1000cc メスコルベにウオルフラム酸ソーダ6g を入れ、約 800cc の 0.15 モル烯酸を加え振篩溶解させ、目盛まで 0.15 モル烯酸を加える。
2. 標準液（0.1 モル溶液）第一化学薬品製

実 施
遠心管に水ウオルフラム酸溶液 4.8cc を入れ、管をふりつつ血清 0.2cc を滴下する。他の 1 本の遠心管には blank として水ウオルフラム酸溶液 5cc を入れ、各々に約 60mg 定沃酸銀 AgI03 を入れ、栓をして 1 分間はげしく振篩する。次いで 2500 回転で 1 分間遠心し、上澄 0.5cc 宛を 50cc メスコルベにそれぞれ移し、各々に約 4cc 宛水を混和後、さらに 20% 純硝酸ソーダ 1cc 宛混和する。ここで濃黄色を呈するが、これに各々の目盛まで水を加え混和後、25℃の温浴中に正確に 10 分放置し、blank を吸光度目盛のに合せ被検液の吸光度を求める。波長は 420μμ。

計算法
予め既知濃度（mEq/L）の標準液で吸光係数を求め、被検溶液の吸光度に乗じ虎度を求めめる。
吸光係数 = 標準液の濃度 / 標準液の吸光度
吸光係数×被検液吸光度＝求める血清中濃度

b) ナトリウム定量法（uranium zinc acetate method）234)
試 薬
1. 酸亜ウラニウム亜鉛試薬
i) 1000cc 容コルベに酸亜ウラニウム 80g、30% 酞酸 48cc、水 392cc を入れ混和、蒸気浴にて熱し振篩溶解させる。
ii) 酸亜亜鉛 220g に 30% 酞酸 24cc、水 276cc を加え、蒸気浴にて加熱振篩し溶解させる。ともに完全に溶解したら熟いうちに大きなコルベに iii) を全部移し、直ちに ii) 全部を振篩しつつ混和する。放置後室温まで冷却したら、これに 0.2g の酸亜亜ラニウム亜鉛ナトリウム "三重塩" を加え混和後一夜放置す。使用前必要量をとり濃過して用いる。
2. 酸亜ウラニウム亜鉛ナトリウム "三重塩"
コルベに 2% 塩化ナトリウム約 5cc を入れ、酸亜ウラニウム亜鉛試薬の 125cc（未だ "三重塩" で飽和していないもの）を加える。これを振篩し 15 分放置後ガラス濁器で通過、少量氷水醚酸で数回洗い、ついでエーテルで数回洗う。乾燥器中にて塩化カルシウム上で乾燥する。
3. 酸亜アルコール洗滌液
氷醚酸 75cc を 95% アルコール 425cc と混和し、これを過剰の上記三重塩とともに振篩し十分飽和させめる。使用前必要量をとり濃過して用いる。
4. 標準液
酸亜ウラニウム亜鉛ナトリウム "三重塩" 615mg を水にとかし全量 100cc とす。

実 施
2 個の硬質遠心管に第 1 管に血清 0.2cc、第 2 管に蒸溜水 0.2cc（blank）を入れ、各管に 6 溶定醚酸 0.2cc 及び醚酸酸 0.1cc を加え、塩化カルシウムの飽和水につけ約 15 分間熱する。ついで火上で内容がこげるまで焼き、約 30 秒冷却後過酸化水素 1滴下、過酸化水素が破壊されるまで熱する、再び冷却し同様操作を 5 滴まで繰返す。内容は無色透明とならで酸亜ウラニウム亜鉛試薬 8 カの cc、で
実験的急性腎障害に於ける血清内無機物質の消長に就て

を加え、細いガラス棒で2分間よく混ぜ15分間放置する。いくらかの試薬でガラス棒を洗い込み、遠心15分後に上澄を全て5分間汱紙を用い斜倒し液をよく流出させる。つぎに約3ccのアルコール洗浄液で汱洗し、10分間遠心し上澄をすてて管を斜倒し水分を切る。さらにエーテルで汱洗を洗浄し、遠心3分後約1分間汱紙に斜倒す。もう一度同様にエーテルで洗浄遠心後斜倒する。ここを管を35℃の暖所に数分おく、エーテルを蒸発させ、汱洗に水10ccを加え完全に溶解するまで混和する。ついて、も一度遠心し不溶解成分を汱洗除去せし、上澄を別の試験管に移して、25℃の温浴に数分つけてから発現している黄色を、水をblankとして吸光度0に合せ両管内容の吸光度を読む。波長は420μM。

計算
1）上記2管の吸光度より、標準グラフを用いて濃度を求め、第1管のナトリウム濃度より第2管の濃度を除した値が求める血清の中トリウム濃度（mEq/L）である。
2）標準グラフ――この場合吸光度とナトリウム濃度は比例しないので、前もってつぎのような標準グラフを作製しておく。前記標準溶液0.1・2・10cc宛を11本の試験管にそれぞれ入れ、各管の全量が10ccになるように水を加える。混和後25℃の温浴中に数分間つけてから直ちに0濃度をblankとして各管内容の吸光度を求める。それらは20.40……200mEq/Lに相当し、グラフは原点を通る曲線となる。

第5節 病理解剖所見並に分類
第1編の第2章第5節に述べたとく、浮腫、出血、腎障害を3等に分ち、高度（+++）、中等度（++)、軽度（+）とした。起炎物質を体重1kg当り1.0cc（10cc）前後使用し、浮腫、出血、腎障害等強く、血性の腹水を伴い、48時間以内に死亡したものを重症群とし、起炎物質0.5～1.0cc（10cc）使用し、しかも生命を全うしたものを軽症群とした。
なお術後は保温、安静、食雑等に留意したが、経過中補液、薬物投与等の処置は一切行わなかった。

第3章 実験成績
単位については第1編第3章に述べたとくで、血清内クロー、ナルトウム等の値をあらわす場合すべてmEq/L値を用いた。

軽症型及び重症型急性腎障害犬、腎障害傷犬並に対照犬における血清中クロー、ナルトウムの消長は、第1～4表に示す如くであるが、これらを個々に分類してみた。

<table>
<thead>
<tr>
<th>動物番号</th>
<th>体重kg</th>
<th>炎症物質及びcc</th>
<th>検査項目</th>
<th>72時間前平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>8.0</td>
<td>Cl109.0</td>
<td>100.2</td>
<td>106.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na142.0</td>
<td>109.7</td>
<td>105.2</td>
</tr>
<tr>
<td>No. 2</td>
<td>12.5</td>
<td>Cl106.1</td>
<td>108.7</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na148.1</td>
<td>103.8</td>
<td>93.5</td>
</tr>
<tr>
<td>No. 3</td>
<td>13.0</td>
<td>Cl113.3</td>
<td>107.0</td>
<td>113.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na147.1</td>
<td>103.8</td>
<td>101.7</td>
</tr>
<tr>
<td>No. 4</td>
<td>15.0</td>
<td>Cl110.8</td>
<td>110.5</td>
<td>106.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na149.2</td>
<td>108.7</td>
<td>95.7</td>
</tr>
<tr>
<td>No. 5</td>
<td>14.9</td>
<td>Cl106.6</td>
<td>92.3</td>
<td>96.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na153.9</td>
<td>101.2</td>
<td>89.6</td>
</tr>
<tr>
<td>No. 6</td>
<td>13.0</td>
<td>Cl107.3</td>
<td>96.5</td>
<td>103.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na155.2</td>
<td>103.0</td>
<td>96.6</td>
</tr>
</tbody>
</table>

平均増減率 (％)
| Cl      | 0      | -8.5 - 6.8 -2.1 - 9.5 -12.5 - 6.8 - 1.1 |
| Na      | 0      | +6.4 -1.6 -3.3 - 8.0 -7.3 - 2.6 - 2.1|
第2表 急性膵臓壊死症候群（単位mEq/L）

<table>
<thead>
<tr>
<th>動物番号</th>
<th>体重kg</th>
<th>起炎物質及量</th>
<th>検査前平均値</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>生存時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 9</td>
<td>8.0</td>
<td>オレフ油12.0</td>
<td>Na</td>
<td>144.9</td>
<td>131.1</td>
<td>94.0</td>
<td>86.0</td>
<td>72.2</td>
<td>72.2</td>
</tr>
<tr>
<td>No. 10</td>
<td>8.0</td>
<td>自家胸汁8.0</td>
<td>Cl</td>
<td>113.5</td>
<td>134.2</td>
<td>147.0</td>
<td>124.0</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td>No. 11</td>
<td>8.0</td>
<td>オレフ油12.0</td>
<td>Cl</td>
<td>111.5</td>
<td>114.9</td>
<td>154.7</td>
<td>146.5</td>
<td>112.7</td>
<td>112.7</td>
</tr>
<tr>
<td>No. 12</td>
<td>8.0</td>
<td>自家腹汁14.0</td>
<td>Cl</td>
<td>113.5</td>
<td>100.8</td>
<td>146.5</td>
<td>146.9</td>
<td>148.2</td>
<td>148.2</td>
</tr>
<tr>
<td>No. 13</td>
<td>8.3</td>
<td>オレフ油11.0</td>
<td>Cl</td>
<td>114.3</td>
<td>114.3</td>
<td>146.9</td>
<td>145.6</td>
<td>144.8</td>
<td>143.9</td>
</tr>
<tr>
<td>No. 14</td>
<td>8.3</td>
<td>自家腹汁15.0</td>
<td>Na</td>
<td>147.7</td>
<td>152.6</td>
<td>146.2</td>
<td>145.6</td>
<td>144.8</td>
<td>143.9</td>
</tr>
<tr>
<td>No. 15</td>
<td>8.3</td>
<td>オレフ油13.0</td>
<td>Na</td>
<td>148.2</td>
<td>148.2</td>
<td>138.4</td>
<td>143.9</td>
<td>143.9</td>
<td>143.9</td>
</tr>
<tr>
<td>No. 16</td>
<td>8.3</td>
<td>オレフ油14.0</td>
<td>Cl</td>
<td>108.0</td>
<td>95.8</td>
<td>100.2</td>
<td>85.2</td>
<td>78.7</td>
<td>78.7</td>
</tr>
<tr>
<td>平均増減率（%）</td>
<td>Cl</td>
<td>0</td>
<td>-9.0</td>
<td>-9.3</td>
<td>-11.6</td>
<td>-14.8</td>
<td>-27.3</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>-0.9</td>
<td>1.5</td>
<td>2.1</td>
<td>5.3</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第3表 腎臓挫傷群（単位mEq/L）

<table>
<thead>
<tr>
<th>動物番号</th>
<th>体重kg</th>
<th>検査前平均値</th>
<th>検査後平均値</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>7日</th>
<th>生存期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 18</td>
<td>17.0</td>
<td>Cl</td>
<td>106.3</td>
<td>102.5</td>
<td>106.3</td>
<td>107.0</td>
<td>101.0</td>
<td>98.7</td>
</tr>
<tr>
<td>No. 19</td>
<td>13.0</td>
<td>Cl</td>
<td>108.0</td>
<td>105.6</td>
<td>106.3</td>
<td>108.0</td>
<td>103.7</td>
<td>102.7</td>
</tr>
<tr>
<td>No. 20</td>
<td>13.0</td>
<td>Cl</td>
<td>104.5</td>
<td>107.4</td>
<td>107.9</td>
<td>101.3</td>
<td>100.0</td>
<td>100.2</td>
</tr>
<tr>
<td>No. 21</td>
<td>14.5</td>
<td>Cl</td>
<td>112.4</td>
<td>105.3</td>
<td>109.2</td>
<td>113.6</td>
<td>105.0</td>
<td>99.2</td>
</tr>
<tr>
<td>No. 22</td>
<td>12.6</td>
<td>Na</td>
<td>146.2</td>
<td>136.2</td>
<td>139.5</td>
<td>135.3</td>
<td>133.3</td>
<td>137.3</td>
</tr>
<tr>
<td>平均増減率（%）</td>
<td>Cl</td>
<td>0</td>
<td>-2.4</td>
<td>-1.3</td>
<td>0.3</td>
<td>5.0</td>
<td>-7.0</td>
<td>-2.7</td>
</tr>
<tr>
<td>Na</td>
<td>0</td>
<td>-3.2</td>
<td>2.8</td>
<td>-1.9</td>
<td>3.4</td>
<td>-4.4</td>
<td>-4.2</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

第4表 対照群（単位mEq/L）

<table>
<thead>
<tr>
<th>動物番号</th>
<th>体重kg</th>
<th>検査前平均値</th>
<th>検査後平均値</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>7日</th>
<th>生存期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 23</td>
<td>15.0</td>
<td>Cl</td>
<td>114.2</td>
<td>108.8</td>
<td>105.8</td>
<td>114.8</td>
<td>113.5</td>
<td>107.2</td>
</tr>
<tr>
<td>No. 24</td>
<td>15.0</td>
<td>Cl</td>
<td>114.2</td>
<td>105.8</td>
<td>114.8</td>
<td>113.5</td>
<td>107.2</td>
<td>107.2</td>
</tr>
<tr>
<td>No. 25</td>
<td>13.8</td>
<td>Cl</td>
<td>114.2</td>
<td>105.8</td>
<td>114.8</td>
<td>113.5</td>
<td>107.2</td>
<td>107.2</td>
</tr>
<tr>
<td>No. 26</td>
<td>14.2</td>
<td>Cl</td>
<td>112.6</td>
<td>106.1</td>
<td>106.9</td>
<td>108.9</td>
<td>106.1</td>
<td>108.3</td>
</tr>
</tbody>
</table>
第1節 血清内クロロの消長

a) 軽症型急性腎機能障害の場合

本群に於ける血清内クロロの消長は第1図の如くで、手術直後速に下降するが、24時間後にはほぼ術前値に復し、以後全例に著明な下降がみられる。多くは第3日後後最低値に達し、その後次第に回復に向かい、7日前後半術前値近くまで回復している。平均減少率でみると第3日に最高で12.5％に達し、第7日では1.1％を示している。

第2図 CI 腎機能障害

b) 腎機能障害犬の場合

本群に於ては第2図の如くで、軽症群同性質の変動を示し、多くは24時間後下降をはじめ第3日後最低値に達し、その後次第に回復に向かい、7日後後半術前値近くまで回復している。平均減少率では第3日に最高で7.0％を示し、第7日では1.3％であった。

第2図 CI 腎機能障害

対照

対照群に於ては第3～5図の如くで、単胃群、脚管結紮群、脚切除群、何れの術後一時下降の傾向を示した後、多くは24時間後半術前値後まで回復し、以後全例下降を示す。
第2〜3日に最低値に達するが、その後回復に向かい7日後は術後前後まで回復している。平均減少率でみると最高は、単開腹群では第3日の5.6％、腎管結紮群では第2日の6.8％、腎切除群では第3日の9.3％で、腎挫傷群の7.0％に比較すると大差は認められないが、軽症群の12.5％よりいく分減少度は軽度であった。

第3図 CI単開腹群

第4図 CI腎管結紮群

第5図 CI腎切除群

c) 重症型急性腎障害死の場合
本群に於ける血清内クレアチニンの消長は第6図の如くで、病状の進行とともに直線的に下降の傾向を辿るものが多い。しかし中にはNo.13、No.17の如く波状に下降するものもみられる。平均減少率でみると18時間以上の生存例で術後18時間の平均減少率は14.8％であり、軽症群の平均減少率12時間の6.8％.

24時間の2.1％に比較すると減少度は著しい。

第6図 CI重症群

対照
対照群には、単開腹群、腎管結紮群の21時間までの消長をみると、第7、8図の如く、大部分術後軽度下降し、6〜12時間後より上昇するが、24時間後なお術前値と大差は認められず、重症群の下降の一続きであるには比すべきもない。

第7図 CI単開腹群

第8図 CI腎管結紮群

小括
軽症群、重症群、腎挫傷群ともに血清クレアチニン濃度は下降する。重症群では直線状又は
波状に下降の一路を辿り死に至る。軽症群では後直ちに下降し、24時間前後一時回復の傾向をみることが、その後第2日乃至第5日、多くは第3日まで下降を続けた後次第に術前値に向けて回復する。一方脾挫傷群では軽症群とほぼ同様な経過を辿るが減少の程度は軽い、軽症群、脾挫傷群ともに第7日には術前値近くまで回復する。

第2節 血清内ナトリウムの消長

a）軽症型急性脾臓壊死の場合

本群に於ける血清内ナトリウムの消長は第9図の如くで、術後6〜12時間までは上昇下降一定しないが（第1表）、24〜24時間後はすべて下降を始めている。第2、3日には最低値に達した後病状の軽快とともに回復に向かい、早いものは第5日に術前値近くまで回復している。しかし中にはNo.5の如く第7日に術前値よりかなり低い値を示しているものもある。平均減少率でみると第2日に最高で8.0％で、第7日では2.1％となっている。

第9図 Na軽症群

b）脾挫傷傷犬の場合

本群に於ては第10図の如くで、術後下降の傾向を示し、第2〜5日まで下降を続けた後術前値に向けて上昇を始め、軽症群では第3日以後は術前値を追っているに対し、本群では下降度一般に低いのかかわらず、No.18、No.20の如く第5日まで下降を続けているものがみられた。平均減少率でみると第3日に最高で4.4％であり、第7日では2.5％であつた。

第10図 Na脾挫傷群

対照

対照群に於ては第11〜13図の如くで、単開腹群、脾管結紮群、脾切除群何れも2〜3日まで術前値より減少の傾向をみるが、極めて軽度である。平均減少率でみると最高は、24時間後で単開腹群では第3日の3.6％、脾管結紮群では第3日の3.0％、脾切除群では第2日の3.0％であり、脾挫傷群の4.4％、特に軽症群の8.0％に比較すると減少度は軽い。

第11図 Na単開腹群

第12図 Na脾管結紮群
c) 重症型急性腎障害死の場合

本群に於ける血清ナトリウムの消長は第14図の如くで，術後上昇するもの下降するもの種々の様相を呈するが，12時間以上の生存例では何れも下降の傾向を示している。平均減少率では18時間以上生存例の術後18時間に於ける5.3％が，軽症群，脳挫傷群に比してやや減少度強い如くみられるが，その他著しい差異は認めなかった。

第14図 Na 死症群

対 照

対照群に於ては，単開腹群，腎管結茶群の24時間までの消長をみると，第15，16図の如くで，術直後は上昇下降種々であるが，一般に下降の傾向がみられた。平均減少率では重症群の18時間以上生存例の5.3％がやや減少度が強い如くみられるが，その他重症群に比し著しい差異は認められなかった。

小括

軽症群，重症群，脳挫傷群ともに，術後血清内ナトリウム濃度は減少する。しかし減少を明らかにあらわしてくるのは術後第2，3日以後であり，重症群では死亡時まで対照群と比較して著しい差は認められない，軽症群でみると術後6～12時間まで上昇下降不定であるが，12～24時間以後はすべて下降し，第2，3日まで下降を続けた後回復に向う。脳挫傷群では軽症群より減少度は軽い。

第5章 総括並びに考察

クロール及びナトリウムは主として細胞多液液にのみ存在し，滲透圧平衡，酸塩基平衡並に水分代謝に重大なる役割を果している。8)

急性腎障害死におけるクロール，ナトリウムに関する研究は少く，Bernhard8)は血液内クロールは減少せずと述べたが，佐藤9)は実験的に明らかに減少することをみており，松村9)も実際に血中濃度著明に低下すると報告している。

著者の実験においては，術直後より多くは減少をはじめ，クロールは第2～5日目，ナトリウムは第2～3日目の間血清内濃度はかなり著明に低下している。すなわちクロールは軽症群においては第3病日の平均減少率
実験的急性髄障死に於ける血清内無機物質の消長に就て

12.5％が最高であり、重症群においては死の近づくに従って減少すます著明となり、降の一路を辿るものが多い。これに対しナトリウムは、軽症群においては12～24時間後すべて下降し、第2病日の平均減少率8.0％が最高であり、重症群においても下降するが、とくに対照群に比し著い差が認めなかった。

Ariel、Collerは外科的傷害後水分及び塩分の貯留されることを臨床上確認しているが、淡沢の影響によりとこれは主として脳下垂体後葉ホルモン中の抗利尿物質及び副腎皮質電解質ホルモンの作用によるものである。抗利尿物質は催興作用と同時に増加し、衛後第1日に最高濃度となり尿量を減少し、水分、ナトリウム、クロールを蓄積する作用を呈した後、第4日減少するが、とくにナトリウムが貯留され、クロールは不変である。この水分、クロール、ナトリウムが貯えられる時、血漿ナトリウム濃度は不变か或是むしろ低下し、クロール濃度は多く低下する。また循環血漿量はむしろ減少し、血管外細胞外液量は拡張している。そして3～4日この傾向があるが、この期間を過ぎ回復期利尿に入れて、ナトリウムが失われるに至ってからは血漿ナトリウム、クロール濃度が回復し、血漿ナトリウム濃度は全身の現象が現出する。

以上の考察より、腎性排泄が抑制され体内貯留があるに拘らず、クロール、ナトリウムは組織間液に移行し、この時むしろ血漿中クロール、ナトリウムは低下する。その他腎性喪失と考え、摂取制限と相まってさらに血漿中クロール、ナトリウム濃度は低下するものであろう。なお初期において、とくに重症型でショック症状を招くが、既に述べた如く、かかる際血液クロール濃度は減少し、ナトリウム濃度は大した変化はみられないことが多いと著者の実験でも重症例ではクロールは著しく減少したが、ナトリウムは明かな下降を示さなかった。軽症例でも初期は同様の傾向がみられた。なお3～4日後、回復期利尿に入れて一般に血漿ナトリウム、クロール濃度が回復するが、さらに摂取制限の緩解されることも影響があると思われ、著者の実験でもこの頃より血漿濃度は比較的速かに回復する。

臨検常例では対照に比し特異的変動はみられず、急性髄障死とはその本態を異にするためであろう。

次にかかる場合の補給であるが、ナトリウムの需要を決定する重要な因子は腎性喪失である。クロールの喪失はそれにナトリウムの喪失を超えるが、クロールの欠乏はCO₂増加により代償される。もし大腸のナトリウムで血漿内濃度を補われるとき、ナトリウムの細胞内シフトを招く傾向に陥るので、腎性ナトリウム喪失が過大でない状態では、血漿ナトリウム濃度そのものを治療しようと努力してはならない。喪失の程度によりナトリウム
ウム平衡0になる程度にとどめ、これを大量与えるより全血、血漿、アルブミン、アミノ酸などによる輸液を中心とするのが賢明な方法であるという。

第5章 結 論

1) 犬を実験動物として脾管よりオレフ油、自家胆汁を脾内に注入し、実験的に急性脾臓壞死をはかし、病変程度と生存時間により重症群及び軽症群に分けた。その他脾臓を広範囲にわたる挫傷を加え脾臓挫傷群を作り、これら動物より定期的に採血し、血清内クロール並にナトリウム濃度を測定した。重症群は48時間以内に死亡し、軽症群、脾臓挫傷群は生存した。

2) 急性脾臓壞死において血清クロール濃度は低下する。重症群は直線状或いは波状に下降の一を辿り死亡に至る。軽症群では銛直後下降し、24時間前後一度回復するが、その後再び下降第2～5日まで下降した後次第に回復する。脾臓挫傷群においては軽度に下降するが対照に比しが大差は認めなかった。

3) 急性脾臓壊死において血清ナトリウム濃度は低下する。重症群は対照に比し著しい変化は認められなかったが、軽症群では初期不常であるが、12～24時間後より下降し、第2～3日まで下降を続けた後次第に回復する。脾臓挫傷群においても下降するが、対照と大差は認めなかった。

攜筆に當り終始御恩恵なる御指導と御校閲を賜った恩師津田教授に深謝する。

文

1) Gamble, J. L.: Chemical Anatomy, Physiology and Pathology of Extracellular Fluid (1952)
2) 齋藤：臨床化学検査法 第4版 (昭28)
3) Sendroy, J. J. of Biol. Chem. 120; 419 (1937)
5) 田坂 代謝 (1952)
7) 佐藤：岡山医誌, 54年, 4号 (昭17)

献

8) 松村 日本外科医誌, 14卷, 5号 (昭14)
11) 浦沢：臨床外科, 6巻, 10号, 11号 (昭26)
12) 浦沢, 松下：最新医学, 7巻, 10号 (昭27)
13) 浦沢：日本臨床, 11巻, 5, 6号 (昭28)
14) 吉川 電解質の臨床 (昭28)
15) 浦沢：綜合臨床, 3巻, 1号 (昭29)
17) 河田：岡山医誌, 66年, 11号 (昭29)
Experimental Study on the Acute Pancreatic Necrosis.

2. Study of Electrolytic Balances, especially Serum Chloride and Sodium.

By

Nanao Fukuda

Entirely the same method was used in this series. Serum chloride was measured by the silver-iodate method and serum sodium by the uranyl zinc acetate method.

It was found that serum chloride decreased in experimental pancreatic necrosis. Progressive decrease was observed in the severe group.

Following early immediate decrease after the onset of pancreatic necrosis and subsequent return to the preexperimental level, serum chloride decreased once again. The lowest value occurred on the 3rd day and then gradually returned to the normal level.

It was observed that serum sodium decreased in experimental pancreatic necrosis. There was found no marked change in serum sodium in the severe group. No definite change occurred in the early stage of experimental disease in the mild group, but it decreased 12 and 24 hours later. The lowest value on the average occurred on the 2nd day of disease and then it gradually returned to the preexperimental value.