骨髄体外組織培養法によるアドレナリン、コートゾン、ACTH の白血球系特に好酸球に及ぼす影響に関する研究 — 特に好酸球減少の機転を中心として —

第 一 編
家鬼大腿骨骨髄培養に於けるアドレナリン、コートゾン、ACTH の白血球系特に好酸球に及ぼす影響に就て

(本論文の要旨は第17回日本血液学会総会、第3回日本内分泌学会西日本地方会、第65回岡山医学会総会、第18回日本血液学会総会に於て発表した。)

岡山大学医学部平木内科（主任：平木 深教授）
副手 山本 伸 郎

昭和31年3月28日受領

目 次
第一章 緒 言
第二章 実験材料及び実験方法
第一节 培養術式
第二節 実験材料
第三節 実験方法
第四節 観察方法
第三章 実際成績
第一节 アドレナリン添加の場合
第一項 増生面積及び細胞密度
第二項 好酸球遊走速度
第三項 好酸球遊走速度
第四項 好酸球数
第二節 コートゾン添加の場合
第一項 増生面積及び細胞密度
第二項 好酸球遊走速度
第三項 好酸球遊走速度
第四項 好酸球数
第三節 ACTH 添加の場合
第一項 増生面積及び細胞密度
第二項 好酸球遊走速度
第三項 好酸球遊走速度
第四項 好酸球数
第四章 総括並に考按
第五章 結 論

と、又 Selke (1936)10225) の pituitary adrenal-system による humoral な支配を説く説と、更に Long (1945)64) のア.が下垂体 (ACTH) を介して副腎皮質ホルモンを分泌すると主張する説があり、之等は夫々の実験的根拠をもっている。更に之等から Thorn (1948)116) は副腎皮質機能検査法として好酸球の消長を示標とする所の ACTH-test11624) を公表し、続いて Recant, Hume, Thorn (1950)85) 等によりア.も下垂体副腎皮質機能の健全性を示唆し得るととして、anterior pituitary-adrenocortical-integrity-test としてのア.
の価値を提唱し、之等は現時臨床上 screening-test として用いられている。然し此のア. - test に対しては近時臨床家より多くの疑義が提出され、教室須賀に於て ACTHとア. とはその作用機転の異異なる事が全く明らかとなったのである。然し乍ら ACTH，コーチゾン（以下コ.）ア.の夫々による好酸球減少が如何なる機転により起るかに就ては，次第に解明の方向に導かれているとは云え尚不明の点が多く残されてゐる。就中好酸球造成腺器である骨髄に於ける作用機転，更には好酸球自体に対しての作用機転に関しては不詳の点が少なくな，そこで私は被覆法による骨髄の体外組織培養法(12)(22)(35)を用いる事により，之等の問題を究明せんと企てた。云ふ迄もなく組織培養は人工的に生命を存続させ得る良質の条件を以て，組織を一定時間生体外に生す，成育せしめるもので，Roux（1884）99，Harrison（1907）32に始て以来種々の方法論的研究がなされ，Carrel & Burrows（1910）12により今日の固形培養法を確立されて，Fisher33，Osgood & Brownlee87，Lewis63，木村56等の本質的究明と共に，現に其の応用分野も急速に進展を見せるつつある。私は本法を用いてア.コ.，ACTH 3 者の骨髄に及ぼす影響を細胞増生及び細胞機能の面より研究し，以て好酸球減少の骨髄内作用機転を確かめる一方，他の白血球の態度との関係に就ても検討した。

第二章 実験材料及び実験方法

第一節 培養術式

単なる生理的食塩水のみでも体外に於て組織の生命を維持し得る事は，その端緒となつた Roux，Harrison の実験によって明らかであるが，更にそのメチウムに改良を加えて組織の発育の段階に迄進歩したのである。即ち Burrows & Carrel（1910）12は凝固メチウムを組織の支持体として用ひる事を考按し，更に Carrel（1912）11はその上に発育促進物質として胎児エキスを添加する事を創めた。之が現在専ら用いられる固形培地で，之は支持体と発育促進物質とから成り，前者は組織を固定し発育増殖の基盤となるもので，現在は同種の線維素即ち凝固血漿が最も用いられ，後者には鶏卵胎児圧圧液が好んで使用されている，次に私の用いた被覆法に就き述べる。

（1）凹窩載物硝子子： 凹窩の内面に懸滴状に培養する方法で，被覆硝子子面に血朊線維素網を形成し，その下面に培養組織があり，以下凹窩部は空間となる（第 1 (a) 図）。

（2）海野打抜載物硝子子： 之は（1）とメチウムの構成は同一であるが，打抜部の表面を被覆硝子（一方に培養組織）で蔽い，メチウムは上下の被覆硝子に密着するので空気はない，観察に際して圧榨液側の面から行う（第 1 (b) 図）。

第二節 実験材料

（1）実験動物は体重1.5kg 前後の健康雄性家児を用い，特に寄生虫の有無に注意した。実験当日早朝，絶食させるものを瞬時に撲殺して右大腿骨を採取し，消毒殺菌した後骨接合をもって剝り，取出した骨髄を予め滅菌シ
ヤーレにリンガール氏液を充せる中に取入れる。

(2) ヘパリン加血漿は実験当日必ず採取する事とし、前日より絶食せしめた家児より当日早朝、予めヘパリンを吸収せる注射器に心臓穿刺により約 15cc の血液を採取せる後、3000 回転 15 分間の遠沈を行い、上清を滅菌試験管に採取する。

(3) 非胎児血圧試験は受精卵化鶏卵 9 日目のものを Fisher の圧搾器により圧搾し、得た卵狀を 3000 回転 15 分間遠沈してその上清を採取した。

以上操作はすべて可及的無菌的に行めた。

第三節 実験方法
すべての所要器具は乾燥滅菌器（100℃）で6時間滅菌するものを用い、以下操作は可及的無菌的に行った。又培養方法は被覆法で第一節に示した (1)，(2) 法を併用した。

メチル化作成法と顺序： (1)，(2) 法共に同様で，a) 被覆卵子 (22×27mm) 上にヘパリン加血漿をマントー注射器 (1cc) に吸引せるものを 1/2 針にて一滴滴下して、卵子中央に直径 1.5cm なる様に拡げ，b) 一定小組織片 (1mm³ 程度のもの) をその中央に置き，c) 次に卵胎児圧搾液を滴下するが通常であるが、薬物添加の場合は先に当該薬物を血漿同様 1/2 針にて一滴滴下。d) 続いて卵胎児圧搾液を同様 1/2 針にて一滴滴下する。次に e) 凹空卵殻卵子の凹空の周囲にラフィン対ワサリリン (冬は 5：5，夏は 6：4) の混合液を秤り作り、裏返して先の被覆卵子に密着させる。 f) そのま 37℃ の卵卵膜中に入れ、一定時間 (10～20分) 経過し血漿の凝固を見届けてから裏返して、周囲をラフィンで封入する。 g) 再び卵卵膜中に入れ、時間毎に取出して観察する。

海野が植物組織切片では上記の方法より 24×32mm の被覆卵子に組織を植え、次に予め 0.9mm の厚味の打抜き卵子の穴に被覆卵子をバールサムで研ふ付けて滅菌しておき、残りの穴の周囲にバールサムを付け、之を先の被覆卵子の上に密着しめる。次にゆるくと全体を傾ければ、本物細胞子の厚さ即ち培養室の厚さが小さいので、メチルの表面に被覆卵子にも密着する。そのま 37℃ の卵卵膜中に入れ、一定時間後に裏返して観察する。時間毎に取出し、その際卵卵膜内で下面に相当する面、即ち圧搾液の面から観察し、再び圧搾液側面を下にして卵卵膜内に入れる。

第四節 観察方法
観察はすべて培養後 3 時間，6 時間，12 時間，24時間目とした。

a) 増生面積の計測： 37～38℃ の温箱内に顕微鏡を入れ、アツペの描油器を用い新生組織を作して，続いて増生の状態を逐次的に描画し，その面積をプラネメーターで計測した。次いで増生前後の差，即も絶対成長の原面積に対する比率を比較成長値とし，順一の比較成長値の対照実験の差に対する比率を計算して成長係数とした。

b) 細胞密度の測定： 換眼レンズ 5 倍，対物レンズ 100 倍にて，増生帯の周辺部，中間部，中心部の 3 部に就て夫々視野の細胞数を計算し，その和を密度指数 (d) とした。谷好酸球に就ては偽好酸球 50 個に対する個数を以てその密度とした。

c) 動走速度の測定： 各細胞に就て 30 秒間に於て 30 分に形態を描画し，細胞中心点の動走距離を順次記録し 3 分間観察した。然る後曲線計で計測して 1 分値の平均値を算出した。

第三章 実験成績
以下各5 例の平均値に就て述べる。

第一節 アドレナリン添加の場合
A. 1,000 倍から 20,000 倍の間の各濃度に就て，1,000倍，5,000倍，10,000倍，20,000倍のものを摂び，夫々 0.01cc 添加し，(0.01mg～0.0005mg) 又対照には A. の溶媒である 0.1％亜亜硫酸ソーダ溶液 0.01cc を添加した。

第一項 増生面積及び細胞密度（表1，図2）
先づ比較成長値を算出して比較するに，
第1表 アドレナリン添加比較成長値
(a) No. VI

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>11.1</td>
<td>12.9</td>
<td>29.0</td>
<td>39.0</td>
</tr>
<tr>
<td>0.01 mg</td>
<td>7.0</td>
<td>15.0</td>
<td>20.4</td>
<td>22.2</td>
</tr>
<tr>
<td>0.002</td>
<td>7.0</td>
<td>13.6</td>
<td>19.0</td>
<td>21.7</td>
</tr>
<tr>
<td>0.001</td>
<td>8.2</td>
<td>16.9</td>
<td>29.6</td>
<td>34.3</td>
</tr>
<tr>
<td>0.0005</td>
<td>10.7</td>
<td>18.9</td>
<td>29.6</td>
<td>32.3</td>
</tr>
</tbody>
</table>

(b) アドレナリン添加比較成長値平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>16.6</td>
<td>26.6</td>
<td>37.5</td>
<td>43.1</td>
</tr>
<tr>
<td>0.01 mg</td>
<td>5.1</td>
<td>9.5</td>
<td>11.6</td>
<td>12.5</td>
</tr>
<tr>
<td>0.002</td>
<td>12.0</td>
<td>18.1</td>
<td>24.2</td>
<td>29.2</td>
</tr>
<tr>
<td>0.001</td>
<td>10.4</td>
<td>13.3</td>
<td>25.0</td>
<td>35.3</td>
</tr>
<tr>
<td>0.0005</td>
<td>11.3</td>
<td>21.8</td>
<td>25.1</td>
<td>36.2</td>
</tr>
</tbody>
</table>

(c) アドレナリン添加成長係数平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 mg</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.002</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>0.001</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

(d) アドレナリン添加細胞密度指数

<table>
<thead>
<tr>
<th>添加量</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>71</td>
</tr>
<tr>
<td>0.01 mg</td>
<td>76</td>
</tr>
<tr>
<td>0.002</td>
<td>81</td>
</tr>
<tr>
<td>0.001</td>
<td>71</td>
</tr>
<tr>
<td>0.0005</td>
<td>64</td>
</tr>
</tbody>
</table>

表1図2に示す如く、0.01mgの如き高濃度では障害をうけ、成長係数は表1（c）に示す如く0.3となるが、低濃度に於ては有意の差を認め、全体として著明な障害は認められない。細胞密度指数は表1（d）に示す如く全体として対照と大差がないが、対照と比べて培養早期に密度が狭々高くなる傾向にある。

第二項 偽好酸球遊走速度（表2、図3）

表2、図3に示す如く、0.01mg、0.002mgでは対照に比し、稍々偽好酸球遊走速度の低下を見るが、0.001mg以下では殆ど対照と変わらない。全体として偽好による偽好酸球遊走速度に対する影響は殆どない。

第2表 アドレナリン添加

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>10.7μ/m</td>
<td>18.2</td>
<td>8.8</td>
<td>11.7</td>
</tr>
<tr>
<td>0.01 mg</td>
<td>8.7</td>
<td>12.9</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>0.002</td>
<td>8.5</td>
<td>12.0</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td>0.001</td>
<td>9.2</td>
<td>13.0</td>
<td>8.0</td>
<td>8.3</td>
</tr>
<tr>
<td>0.0005</td>
<td>8.5</td>
<td>13.6</td>
<td>14.2</td>
<td>10.4</td>
</tr>
</tbody>
</table>

第3図 偽好酸球遊走速度

アドレナリン添加（平均値）（2－5図）

第2図 比較成長値
第三項 好酸球遊走速度（表 3，図 4）

ア．添加で最も特微ある結果は好酸球に対してである。表 3，図 4 に示す如く高濃度の 0.01mg では，6 時間値が対照 15.4μ/mに対する 4.9μ/m であり，0.002mg では 6.9μ/m であり，著明に細胞機能が障害されている。0.001mg 以下では対照と有意の差を見ないが，只 6 時間値に於て対照 9.7μ/m に対して 4.3μ/m で著々劣っている。即ち前節の偽好酸球に比して遊走速度低下の著しい事が注目される。

第 3 表 アドレナリン添加
No. VII 好酸球遊走速度

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>10.2μ/m</td>
<td>10.6</td>
<td>15.2</td>
<td>9.0</td>
</tr>
<tr>
<td>0.01mg</td>
<td>1.1</td>
<td>4.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>0.002</td>
<td>3.6</td>
<td>5.7</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>0.001</td>
<td>4.0</td>
<td>16.5</td>
<td>20.0</td>
<td>10.6</td>
</tr>
<tr>
<td>0.0005</td>
<td>8.7</td>
<td>20.0</td>
<td>17.6</td>
<td>11.3</td>
</tr>
</tbody>
</table>

アドレナリン添加好酸球遊走速度平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>9.7μ/m</td>
<td>15.4</td>
<td>13.4</td>
<td>12.0</td>
</tr>
<tr>
<td>0.01mg</td>
<td>2.9</td>
<td>4.9</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>0.002</td>
<td>4.2</td>
<td>6.9</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>0.001</td>
<td>4.3</td>
<td>17.5</td>
<td>14.8</td>
<td>10.1</td>
</tr>
<tr>
<td>0.0005</td>
<td>8.3</td>
<td>18.5</td>
<td>16.8</td>
<td>10.5</td>
</tr>
</tbody>
</table>

第 4 図 好酸球遊走速度

第 5 図 好酸球数（対・偽好酸球50）外

以上要するに高濃度の場合，増生面積は対照に比し低下するが，細胞密度，好酸球数には著しい差を認めない。細胞密度は逆に増加の傾向を示すものもある。即ちア．は高濃度で骨髄組織増生の抑制作用を多少認めるが，好酸球に対しては特に顕著ではない。遊走速度では一般に高濃度で速度の低下が見られる
が、偽好酸球に比し好酸球の低下が特に顕著であり、又偽好酸球遊走速度の低下が認められないので好酸球遊走速度のみ低下している。

第二節 コーテゾン添加の場合
コ.は25mg per ccから0.2mg per cc迄の各濃度のものを0.01cc宛（0.25～0.002mg）を添加し、対照にはコ.の溶媒に使用せる薬剤を超音波により振盪混和して使用した。

第一項 增生面積及び細胞密度（表5、図6）

第5表 コーテゾン添加比較成長価
(a) No. III

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>21.0</td>
<td>28.5</td>
<td>39.9</td>
<td>46.6</td>
</tr>
<tr>
<td>0.25mg</td>
<td>2.0</td>
<td>3.0</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>0.05</td>
<td>6.1</td>
<td>7.7</td>
<td>8.6</td>
<td>9.0</td>
</tr>
<tr>
<td>0.01</td>
<td>16.0</td>
<td>29.0</td>
<td>32.6</td>
<td>39.0</td>
</tr>
<tr>
<td>0.002</td>
<td>25.1</td>
<td>32.5</td>
<td>38.7</td>
<td>45.1</td>
</tr>
</tbody>
</table>

(b) コーテゾン添加比較成長値平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>27.4</td>
<td>35.2</td>
<td>39.9</td>
<td>47.6</td>
</tr>
<tr>
<td>0.25mg</td>
<td>2.1</td>
<td>3.2</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>0.05</td>
<td>12.0</td>
<td>15.8</td>
<td>18.0</td>
<td>18.9</td>
</tr>
<tr>
<td>0.01</td>
<td>27.3</td>
<td>34.2</td>
<td>37.6</td>
<td>48.4</td>
</tr>
<tr>
<td>0.002</td>
<td>23.0</td>
<td>28.4</td>
<td>38.7</td>
<td>40.1</td>
</tr>
</tbody>
</table>

(c) コーテゾン添加成長係数平均

<table>
<thead>
<tr>
<th>時間</th>
<th>0.25mg</th>
<th>0.05</th>
<th>0.01</th>
<th>0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25mg</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>0.05</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>0.002</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

(d) コーテゾン添加細胞密度指数

<table>
<thead>
<tr>
<th>添加量</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>73</td>
</tr>
<tr>
<td>0.25mg</td>
<td>15</td>
</tr>
<tr>
<td>0.05</td>
<td>81</td>
</tr>
<tr>
<td>0.01</td>
<td>74</td>
</tr>
<tr>
<td>0.002</td>
<td>75</td>
</tr>
</tbody>
</table>

表5, 図6に示す如く、高濃度のコ.即ち0.25mgでは著明に増生は障害され殆んだ増生しない。即ち成長係数は表5(c)に示す如く0.1以下となる。0.05mgでは成長係数0.4で対照の約半分の増生であるが、0.01mgでは増生は対照と殆ど変わらず、24時間値の成長係数1.0である。全体として特に高濃度の場合には増生が著明に障害されるが、一定量以下の濃度では障害されない。細胞密度は表5(d)に示す如く対照の間に差はないが、再の場合に見られたと同様に培養早期に密度が上昇する傾向があり、又0.05mgでは密度が対照に比べ稍々高くなっているが、0.25mgでは対照の1/4以下に低下している。即ち特に高濃度では増生の主体をなす偽好酸球に対しても障害を与えるわけである。然し適当な濃度ではかえって増生が制限されるわけである。

第二項 偽好酸球遊走速度（表6、図7）
表6、図7に示す如く、高濃度の0.25mgでは3時間値で対照3.3μ/mに対して3.8μ/mと著明に低下している。0.05mgでは対照と同様で、0.01mgではかえって対照を上回る

第6表 コーテゾン添加

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>7.5μ/m</td>
<td>6.8</td>
<td>7.2</td>
<td>4.6</td>
</tr>
<tr>
<td>0.25mg</td>
<td>4.0</td>
<td>0.5</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>0.05</td>
<td>4.8</td>
<td>7.8</td>
<td>5.2</td>
<td>4.8</td>
</tr>
<tr>
<td>0.01</td>
<td>4.8</td>
<td>10.5</td>
<td>8.0</td>
<td>4.5</td>
</tr>
<tr>
<td>0.002</td>
<td>9.5</td>
<td>7.8</td>
<td>5.7</td>
<td>4.5</td>
</tr>
</tbody>
</table>
コーチゾン添加好酸球遊走速度平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>9.3μ/m</td>
<td>8.3</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.25mg</td>
<td>3.8</td>
<td>0.4</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>0.05</td>
<td>8.1</td>
<td>8.1</td>
<td>4.6</td>
<td>5.0</td>
</tr>
<tr>
<td>0.01</td>
<td>6.4</td>
<td>9.9</td>
<td>9.3</td>
<td>4.2</td>
</tr>
<tr>
<td>0.002</td>
<td>10.5</td>
<td>8.3</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

第7回 好酸球遊走速度

傾向にある。全般に好酸球に対しては特に高濃度の場合を除き、障害的な影響を有していない。

第三項 好酸球遊走速度（表7、図8）

コーチゾンの添加に際して最も特徴のあるのは好酸球に対する作用である。表7、図8に示す様に、好酸球遊走速度は0.25mgは勿論の事、0.05mgでも対照の1/3から1/4程度に低下している。尚、を遂時に検討して見れば、好酸球機能の最も旺盛なと思われる6時間値に於て対照との差が最も著しい。即も対照は6時間値10.2μ/mに対し、0.25mgでは0.3μ/m、0.05mgでは2.7μ/mと著明に低下し、0.01mgでも4.0μ/mで対照の1/2以下である。前節の好酸球遊走速度と比較し、好酸球機能障害の顕著な事が明らかである。

第四項 好酸球数（表8、図9）

表8、図9に見られる様に、全般に対照に対し好酸球数の低下を来している。特に0.25mg、0.05mgでは著明に減少している。6時間値

第8表

No. | コーチゾン添加好酸球数
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>対照</td>
<td>2.0</td>
</tr>
<tr>
<td>0.25mg</td>
<td>1.0</td>
</tr>
<tr>
<td>0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>0.002</td>
<td>1.5</td>
</tr>
</tbody>
</table>

コーチゾン添加好酸球数平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>2.0</td>
<td>2.3</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>0.25mg</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.05</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>0.01</td>
<td>0.3</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>0.002</td>
<td>1.4</td>
<td>1.5</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>
第9図 好酸球数（対・偽好酸球50）

対照2.3に対して0.25mgでは0.5, 0.05mgでは0.3, 0.01mgでは1.0とすべて低下している。即ち原組織（培養骨髄組織）中で既にコの影響をうけて遊出、又は分裂して来ないのである。

以上要するにコは高濃度では全般的に骨髄実質に対して障害的に働き、好酸球に対しては低濃度でも分裂を或程度抑制し、機能を低下せしめる。

第三節 ACTH 添加の場合

ACTH は 10 I. U. per cc から 1.7 I. U. per cc 迄の各濃度のものを0.01cc宛（0.1 I. U. ～ 0.017 I. U.）添加し、対照には生理的食塩水を 0.01cc宛添加した。

第一項 増生面積及び細胞密度（表9，図10）

表9図、10に示す如く比較成長値平均は逐次的に追求して対照と殆ど差を認めず、各濃度共に増生の障得は認められない。細胞密度指数も表9（d）に見られる様に対照と略々同程度で有意の差を認めない。

第9表 ACTH 添加比較成長値
(a) No. VIII

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>2.1</td>
<td>9.0</td>
<td>13.3</td>
<td>16.0</td>
</tr>
<tr>
<td>0.1 I. U.</td>
<td>3.6</td>
<td>6.8</td>
<td>7.6</td>
<td>14.8</td>
</tr>
<tr>
<td>0.05</td>
<td>3.4</td>
<td>7.2</td>
<td>8.4</td>
<td>12.9</td>
</tr>
<tr>
<td>0.025</td>
<td>3.3</td>
<td>8.0</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td>0.017</td>
<td>4.1</td>
<td>6.2</td>
<td>8.8</td>
<td>12.0</td>
</tr>
</tbody>
</table>

(b) ACTH 添加比較成長値平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>3.3</td>
<td>6.5</td>
<td>10.2</td>
<td>11.0</td>
</tr>
<tr>
<td>0.1 I. U.</td>
<td>3.5</td>
<td>6.7</td>
<td>7.5</td>
<td>13.1</td>
</tr>
<tr>
<td>0.05</td>
<td>3.2</td>
<td>5.4</td>
<td>7.4</td>
<td>10.0</td>
</tr>
<tr>
<td>0.025</td>
<td>2.1</td>
<td>6.1</td>
<td>7.7</td>
<td>11.7</td>
</tr>
<tr>
<td>0.017</td>
<td>4.4</td>
<td>6.3</td>
<td>8.6</td>
<td>13.0</td>
</tr>
</tbody>
</table>

(c) ACTH 添加成長係数平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 I. U.</td>
<td>1.1</td>
<td>1.0</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>0.05</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>0.025</td>
<td>0.6</td>
<td>0.9</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>0.017</td>
<td>1.3</td>
<td>1.0</td>
<td>0.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

(d) ACTH 添加細胞密度指数

<table>
<thead>
<tr>
<th>添加量</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照</td>
<td>7.0</td>
</tr>
<tr>
<td>0.1 I. U.</td>
<td>6.6</td>
</tr>
<tr>
<td>0.05</td>
<td>7.2</td>
</tr>
<tr>
<td>0.025</td>
<td>6.8</td>
</tr>
<tr>
<td>0.017</td>
<td>7.3</td>
</tr>
</tbody>
</table>

ACTH 添加（平均値）（10～13図）

第10図 比較成長値

第二項 偽好酸球游走速度（表10，図11）

表10，図11に示す如く対照と比べて著明の差を認めないが、全般に対照を上回る傾向にあり、特に培養後6時間以後に於てその差が著明明瞭となり、略々細胞後進が進む状態を示している。即ち6時間間で対照は5.1μ/mに対して0.1I.U.では9.1μ/m, 0.05 I. U.では8.8μ/m, 0.025 I. U.では8.9μ/mと大々対照を上越っている。
骨髄体外組織培養法によるアドレナリン、コルチゾン、ACTHの白血……云々

第10表 ACTH 添加

<table>
<thead>
<tr>
<th>No.</th>
<th>11</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>対照</td>
<td>9.5 μm</td>
<td>5.1</td>
<td>4.5</td>
</tr>
<tr>
<td>0.1 I.U.</td>
<td>6.6</td>
<td>8.1</td>
<td>5.0</td>
</tr>
<tr>
<td>0.05</td>
<td>7.1</td>
<td>9.0</td>
<td>5.2</td>
</tr>
<tr>
<td>0.025</td>
<td>8.4</td>
<td>8.7</td>
<td>7.4</td>
</tr>
<tr>
<td>0.017</td>
<td>9.0</td>
<td>10.4</td>
<td>9.0</td>
</tr>
</tbody>
</table>

ACTH 添加 偏好酸球遊走速度平均

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>11.4 μm</td>
<td>5.1</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>0.1 I.U.</td>
<td>7.0</td>
<td>9.1</td>
<td>6.7</td>
<td>3.9</td>
</tr>
<tr>
<td>0.05</td>
<td>6.8</td>
<td>8.8</td>
<td>6.9</td>
<td>6.3</td>
</tr>
<tr>
<td>0.025</td>
<td>10.0</td>
<td>8.9</td>
<td>7.9</td>
<td>6.6</td>
</tr>
<tr>
<td>0.017</td>
<td>10.9</td>
<td>10.4</td>
<td>8.7</td>
<td>6.8</td>
</tr>
</tbody>
</table>

第11図 偏好酸球遊走速度

第12図 好酸球遊走速度

第三項 好酸球遊走速度（表11，図12）
好酸球は表11，図12に示す如く，前節の偏好酸球と同様の傾向が見られるが，特に好酸球に於て著明に細胞運動機能亢進が見られる。最も高濃度の0.1 I.U.の場合でも対照の3時間値 4.2 μm に対して9μm となる様に，培養早期に既に著明な運動機能の亢進を認め，0.025 I.U.では6時間値は対照と大差はないが，12時間値では対照3.2 μm に対して11.3 μm と著明に亢進している。即ち対照の生食水添加では6時間以後次第に運動減退するのに反し，ACTH の場合は6時間以後も尚運動旺盛である。ACTH は好酸球の運動機能を亢進するのみならず，その持続に於ても増大する点が注目される。

第四項 好酸球数（表12，図13）
表12，図13に示す如く，対照との間に著明な差はなく，特に0.1 I.U.の如き高濃度でも

第13図 好酸球数（対・偏好酸球50）

線の区別は10図と同じ
第12表 ACTH 添加

<table>
<thead>
<tr>
<th>No.</th>
<th>VII</th>
<th>好酸球数（対・無好酸球50）</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>対照</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>0.1 I.U.</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.05</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.025</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>0.017</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

ACTH 添加

<table>
<thead>
<tr>
<th>時間</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照</td>
<td>3.0</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>0.1 I.U.</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.05</td>
<td>3.5</td>
<td>3.8</td>
<td>3.3</td>
<td>3.8</td>
</tr>
<tr>
<td>0.025</td>
<td>3.5</td>
<td>4.3</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>0.017</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

尚増生を抑制する如き結果は見られない。又0.05mg以下の濃度では対照より稍々多くなる傾向にある。

以上要するに ACTH は好酸球増殖に軽度に、好酸球に対しては著明にその運動機能を亢進させる。特に好酸球に於ては運動機能の持続も増大する。増生面積、細胞密密度には著しい差を認めない。

第五章 総括並びに考察

好酸球減少機序を構成する要因としては、間脳下垂体前葉（ACTH）の分泌機能41及び副脳皮質ホルモン分泌機能41との関係、更に好酸球形成器（骨髄）への作用機序、及び末梢の好酸球自体への作用等々の要約が示される。然して之等のすべての条件に就て呼味を加える必要があるのであつて、その一部を除き他の事は出来ない。所が現在迄に、上位中枢の分泌機制及び副脳皮質ホルモンの分泌機能との関係に就ては極々の理论体系が形成されているが、最も重要と思われる最終的解明が著者次の機械に於て的作用機序、更に好酸球及び好中球の反応の相異なる機繊等に関しては今尚不明の点が多いあるのである。

先ず AR.好酸球減少に関しては Long 一派の説明せる「AR.好酸球減少を来すものである」との所説があり、Furtier (1951), McDermott (1950), Hechter (1949), 他等も同様の事実を認めている。之に到れてはその後の追試検討が行なわれ、DeFossey (1950) が副脳皮質ホルモンAR.好酸球減少の原因を見出し、着明な好酸球減少を認めたのを始めとして、Gordon (1950), Nasmuth (1951) 他等の同様の見解がある。副脳の神経切断121, 全文感神経系の剝出83等も AR.好酸球減少の原因を認めるに到る事実を証明された結果、Long の説は次第に消滅せられ始めた。然し Speirs (1949)108 は副脳ホルモン除去マウスより AR.好酸球の減少を示さず。AR.好酸球減少の原因を皮質ホルモンを介して現われるものであると云っている。又ア－リ臨床で也可 Kark (1952), Bergenstal (1953) 他等症候患者に AR.好酸球減少時好酸球減少に何等著しい影響を及ぼす事実が見出された結果、ACTH の説は次第に消減せられ始めた。然し Speirs (1949)108 は副脳ホルモン除去マウスより AR.好酸球減少の原因を皮質ホルモンを介して現われるものであると云っている。又ア－リ臨床で也可 Kark (1952), Bergenstal (1953) 他等症候患者に AR.好酸球減少時好酸球減少に何等著しい影響を及ぼす事実が見出された結果、ACTH の説は次第に消減せられ始めた。
骨髄外組織培養法によるアドレナリン、コルチゾン、ACTH の白血……テラ 783

は得られないのであって、現実臨床治療学上
ACTH の代用にア.が用いられていない事は
この限界の消息を堆積に物語つている。

次にア.が下垂体を介する事なく直接副腎
に作用するとする説もある。石橋（1955）47
は下垂体剤剤犬に於ける少量のア.投与が副
腎静脈血中 chemocorticoid の増加を来し得る
事を見て、ア.が直接副腎皮質に作用し得る
事を指摘し、又 Speirs（1948）108 は下垂体剤
出白鼠にア.投与し約50%の好酸球減少を見
ている、其の他田坂（1953）115 も同様の見解
がある。尚中村134）井林は皮質ホルモン分泌
の内臓神経直接的支配機器を確認すると共に、
此の際内臓神経刺戟により遊出するア.が
Long 説の如き間接的機序によらず、皮質に直
接作用して皮質ホルモン分泌を促す様な直接
的機周一推定しており、下垂体剤剤犬に於て
も同様の結果を見ている。

以上の様に Long の説には副腎及び下垂体
との関係から反対を唱える者が多いが、更に
スア.が下垂体も副腎皮質も介さなくても好
酸球減少を来し得る事は教室須賀（1954）111
の成績（後述）により明らかにされている。
しかしその発生機関に関しては未解決の点が
多く、現在迄に考えられている機関の主なもの
は次の3つである。即ち1）骨髄への作用、
2）末梢組織への抑制、3）末梢に於ける好酸
球の破壊等である。

1）に関しては教室の須賀111）は、ア.の骨
髄流流実験の結果から、ア.は直接骨髄に作
用して好酸球の骨髄内留置を起す事を明らか
にし、更に組織像を以て著を確認した。又
Ruppel（1951）100）はア.皮下投与に際し、骨
髄像で骨髄機能亢進像及び好酸球産生増加を
認めて、ア.好酸球減少は好酸球生殖障害に
基くものでないと事を提唱している。

2）に関してはその有力なものとしては肺
への抑制的である。肺に関しては古くからヒ
スタミン含有量の高い臓器である事、又称好
酸球がヒスタミン含有量の多い事等からその関
係が注目されている。Bierman（1952）9）は
肺循環に於て白血球及び血小板がア.投与時
肺に貯留されると云い、Schneider（1953）101）
も同様に同意し、Kirk（1952，1953）52）は副腎
全摘患者のア・test 陽性時薬心カテーテルに
証で得た肺静脈血中好酸球が著明するのを
見て、ア.による好酸球の肺への抑制亢進を
強調した。

又脾に就て Solomon（1951）100）は脾動、静
脈好酸球差を ACTH.ア.その他の stress に就
て検討し、脾は第好酸球の流出を促すと云
う脾の好酸球抑制には否定的見解を表明し、
Dury（1950）10），Best（1953）3）も脾摘前後の
ア.・test の結果より同様否定的立場をもって
いる。通肝に就ては Janovics（1953）48）は好
酸球抑解を否定している。

3）に関して Padawer（1952）89）は肺腺肝
胞内大腺細胞系の好酸球摂取作用が、ア.投
与時亢進して好酸球を貪吸破壊すると云い、
之に対して Wesley（1953）155）は網内系と好酸
球の関係を確認事として、トリプシン胎にて
網内系を破壊するラットにア.を投与した結果、
欠張好酸球減少を認めたので、ア.好酸球
減少網内系破壊では障害されないと述べて
いる。又一方 Fruman（1953）26）は好酸球減少
時に於ける好酸球の淋巴腺内崩壊を説
いている。然し乍ら、等の直接破壊説は、For-
sham24），Best111）等により in vitro で否定
されており、私の実験からも直接破壊も考え
られる像は認められず、亦須賀110）が試験管
内で行った抗線維素血にア.を添加した場
合にも好酸球並に他の白血球に何等の変化も
認めていない。

従て以上の文献に対比しつつ私の成績を検
討してみる。私は教室須賀の成績に鑑み、ア.
好酸球減少の骨髄に於ける機関を再確認せ
がため、家兎骨髄培養に対するア.の直接添
加を試みた。其の結果、好酸球数の変動も
好酸球の遊出及び分裂に対しては、特に高濃
度の場合を除き著明な影響を見ず（低濃度で
はかえって増える場合もあり）特に好酸球増
生に対しては障害的であると思われない。之
に反して細胞機能即ち好酸球遊走速さは著明
に低下減退し、明らかに細胞機能の障害作用
を認める。従ってア、添加の場合は対照に比べて早く変性死亡する。ただし一方傷好酸球に
対しては対照との間に有意の差を認め難しい。

之を要するにア、骨髄内好酸球に対して
摂摂的に作用し、特に細胞個々の運動機能障
碍を招来し、その結果後篇で詳述する如き運
動形態を示し、胸体は次第に原形（丸い形）
に近付いて来るのであって、斯の如き変化が
共同的に作用する事により好酸球の骨髄内抑
留を促進するものと考えられる。即ち白血球
は自己の運動性により骨髄静脈叢内の静脈質
壁内に細胞間より浸入するのであるから、細
胞の運動性が減退し更に丸くなってしまえば、
静脈質内への遊出が減退乃至停止されるの
は当然である。所が一方偽好酸球はその機能
tを障害されず、充分静脈質内遊出は行われて
よいものと推察される。従ってア－ア好酸球減
少の骨髄内に於ける作用機転は（骨髄内好酸
球の態度）、好酸球の機能低下による骨髄静脈叢
への遊出の抑制であり、好酸球の骨髄内抑
留である。然して好酸球の直接破壊、変性又は
産生障碍等は認められない。

以上によって私は先に須賀が提唱した所の、
ア、の骨髄内好酸球抑制説を別の観点から確
認すると共に、更にその根拠を追求して得たも
のと確信する。

次にコ、好酸球減少機構に就て文献を展
望するに、コ、の好酸球減少度並びに持続は
の投与方法、投与からの時間、投与量が重
大な関係を有する事は疑い得ない116)177)、即ち
投与形式の相異に就てはコ、の経口投与と静
脈内投与とは同様迅速な好酸球減少を起こす
が116)、筋肉内注射時は局所不活性化のため
より大量を必要とする事が見られており、
又長期間のコ、投与では長期に亘る好酸球減
少が見られている。又 Kowalski112)等はコ、筋
肉内に於ては経時に著しい大いに好中球减少を
認め、経口投与に於ては経時に著明な好酸球減
少を認めてい、尚、は生体に常時分泌さ
れている組織皮質ステロイドの一種であるが、
stress によりその血中濃度が一時的に上昇し、
その量的調査を超えた場合にのみ好酸球減少
として表されるものと解される（Thorn 等は
好酸球減少度と血中ステロイド濃度が比例す
ると考えている）118)。

現在考えられているコ、好酸球減少機構は
次の3つである。1）骨髄内好酸球の産生乃
至遊出の抑制効果。2）諸糖析への抑制又は
貯留、3）末梢に於ける直接破壊作用等であ
る。

1）に関して Gordon29)は大量的コ、投与は
自験骨髄内好酸球の著減を見る点より、コ、
による好酸球産生障害を主張し、之と同様の
見解にあるものに Goldmann83)等がある。又
Essellier（1954）171)は大量のACTHを全量
（200〜450mg）筋注し、流血中の好酸球が3
日間にて消失したにも拘らず、骨髄の自
生には促進も減退も起らなかった事を述べ、
更に好酸球増多のある人間でも正常好酸球レ
ベルの自人間に用いる量よりも大量のホルモン
を長期に亘り投与すれば、流血中好酸球の完
全消失を起し得るのを認め、之は骨髄内好
酸球生成に変化のない以上、骨髄からの好酸
球放出速度が抑制される為であると云ってい
る。

然らば之等の骨髄抑制機序に対して否定
的な見解のものも多く、Rosenthal（1950）97)
は非血液疾患著者7例にACTH、コ、を投与
して末梢好酸球減少を認めた際、同時に行
った骨髄像の検査で好酸球系細胞数の増加及
び幼若型の増加を認めて、少なくとも骨髄の障
碍を認わず、又 Root（1953）98)はACTH筋
注及び静注下血患者骨髄に於ける好酸球生
成に影響を見出せず、Hudson（1950）45)は
ACTH投与により招かれて骨髄性白血球の生
成を促進すると述べている。又一方 Solomon
（1951）105)等は、コ、による末梢好酸球減
少期及び増多復元期に好酸球の質的変動を認
める難事から、血管運動神経性の分布異常を
重視している。

2）に関して Spain（1951）108)はコ、25mg
投与マウスの脾臓内好酸球増多を記載し、一
方コ、は末梢血好酸球のZusammenballungを
促進すると想定し、R.E.S．への抑留や、前
毛細管壁（靜脈）への密着が関与するとともに述べている。然し脳の押留に就ては現在一般に否定されており、Thorn, Spears(109), Essellier(21)等は捕拘前後のACTH-testに於ける好酸球減少に差を見ない事を指摘し、一方Solomon(105)等によると脳の動、静脈内の好酸球は捕質コルチコイド投与時に対照を見ないと云つている。又Dury(1954)(10)等も脳の押留に就ては否定している。

肺の押留に就ては松岡、西川等(1955)はACTH注射時及び手術時の犬に於ける好酸球減少が肝、脾等の静脈で見られず、肺循環の肺動脈血で著明に現われるのを認めて、肺循環は好酸球を捕質的に減少せしむるものと推定し、又Lauman(1950)(62)は末梢血好酸球数が肺循環後著減するのを認め、又別の観点からVaughn(1953)(21)は肺と好酸球の関係を観察している。一方Essellier(1954)(21)は実験的Laeffler氏症候群に就てACTHの影響を観察した結果、糖質コルチコイドは肺内好酸球を減数せしむる作用を抑制する働きはあつが、好酸球の組織への侵入を促す働きはナ、従って糖質コルチコイドによって起る好酸球減少は組織への侵入によって起るとは考えられないとしている。

3) に関してはPadawer(1952)(89)はコ、投与白鼠の血中及び肺窩腔内好酸球の変動を観察、且つ肺窩腔内大気細胞系の特異的に好酸球を捕質する機能を力説した。斯等内系機能に対するコの影響として、Essellier(1954)(21)もモルモットにコを0.025mg/100gm経口投与すると好酸球減少を見るが、予めR.E.S.を捕質しておけばコの投与によって有意の好酸球減少を示さず、更に大量のコ、即ち2.5mg/100gmを投与すると捕質群にも強く好酸球減少を現す。この結果から、好酸球減少の一因は網内系の機能亢進に及ぼす作用の旺盛化によるものであろうと論じている。之に反して梅原(1952)(120)は鶏血球の末梢血中よりの消失時間を示標として、各種ホルモンの網内系脅作用に対する影響を調べ、DOCAで機能亢進、CO, では機能抑制と反対の結果を示している。以上より網内系に関しては尚検討すべき余地を残している。

次に体外に於けるコの作用に就て、Muehreke(1952)(74)は末梢血好酸球に高濃度のコを加え4時間卵嚢内に保持した所、対照の食塩水添加に比べて著明な好酸球減少を示、此の際アの追加でコの作用は増強され充分を認めた。更にGodjowski(1951)(72)はコ、は流血中でも体外でも白血球に破壊的に作用し、好酸球、淋巴球、好中球の順に抵抗が弱いと述べている。而し一方の等の好酸球直接破壊説に対して、Essellier(1954)(21)は血液をコ、CO,アルデハイド、DOCA、CompoundF等と共に24時間卵嚢内に入れてても好酸球の変化を見なかったと云い、Cape(10)(90)も同様の見解を発表している。Osada(1954)(86)はACTH注射後1,2,4時間を経過した後の血液をとり、その血漿のみを無処置の人血漿と交換して卵嚢内に保持したが、何れにも好酸球の著変を示されなかったと云い、此の様にこの問題に就ては実験的駆進状態あるが、どうかと言うと直接破壊の否定論を左廻するものが多々ある。

以上の文献から見た成績と私の実験結果とを照合して考察を加える、先ず骨髄外組織培養に対するコの影響を見ると、高濃度では全般的に骨髄静脈に対して破壊的に働き、好酸球に対しては低濃度でも分裂を抑制し、機能を著明に低下せしめた。従ってコ、好酸球減少の基質に対する作用機転としては好酸球在静脈収への遅延障害の他に、実質障害の面に或程度考えてなければならない事を確認したのである。Muehreke(74)が大量のコと共に末梢血を卵嚢に入れ著明な好酸球の減少を見ているが、之は非常に高濃度であるための抑制効果であると考えられる、もろ前述須賀(111)の実験に於ても試験管内で好酸球のみならず好中球の破壊をも認める如く、私の場合でも非常に高濃度のコを添加すれば好酸球のみならず好中球も障害され、増
生面積、偽好酸球遊走速度、好酸球遊走速度、好酸球数等すべてが低下し、Gordon の説如、骨髄内好酸球の生成抑制を考える結果となる。したがって前述の如く、この摂取量に由って主としてされるものである。私の実験からも明確である。又 Godlewski[37] がコ、に対象は好酸球、淋球、好中球の順に低抗が弱いと云っているが、私の成績も大体これに一致する。次いでコを順次稀釀し適当な濃度を模倣、偽好酸球には無影響で好酸球のみに強く作用する量がある。此の場合、偽好酸球遊走速度は対照と差を認めないと反し、好酸球では著明な機能障害を認め、又密度にしてても偽好酸球は対照と大差なくかえって増加する場合もあるのに反して、好酸球数は著しい低下を見るのであって、明らかに細胞分裂の障害が表われている。然し更に稀釀を続けるならば偽好酸球遊走速度は対照より上昇し、好酸球機能も対照に近付いて来る。即ち、中毒濃度（高濃度）から有効量（適当な濃度）、更に稀釀量（非常に低濃度）の段階を認める事が出来、此の段階に伴って好酸球の障害も異なるわけである。若しこれが生体内で行われるとすれば、好酸球が減少する程度とその後の恢復の速度に関係があると考えられる。即も多くの人が認識している所のコ、の少量投与に際しては好酸球減少度は短く[312]、又恢復は速いが、少量の場合は好酸球減少度は少なく、又恢復も遅いと云う事に一致する。然し私等の実験の外組織培養に於ては、コの添加によって起る好酸球の障害の観察はしない得るとしても、更にその恢復に至る迄の経過は、培地条件の変動、又対照に於いても見られる様々な組織及び細胞の時間的経過に伴う変性等の条件が加わるため、自然観察事は出来ない。

以上を総合して云い得る事はコ、の適量（有効量）の場合に於てコ、独特の作用を表わし、好酸球の変動に特異的障害して、偽好酸球には殆ど影響を与えない事が明確となったのである。即ち Stressor によるコ、の適量の分泌によって、生体防禦機構の一種としての好酸球減少を見るものであつて、生体内に常時分泌されているコ、が何故末梢血好酸球を減少せしめないかとの疑問を或程度解決し得るものである。

次に ACTH は周知の如く、下垂体前葉の向副腎皮質性ホルモンで[81]、之により副腎皮質からは様々なコルチコイドを分泌する[81]。従って通常 ACTH の作用は副腎皮質を介した作用であり、好酸球に関しても当然糖質コルチコイドを介しての作用であると考えられている。然に近年、本、による Thorn's test に対して前述の如く臨床面より多くの疑義が提出され、ACTH の作用機転とア、の作用機転の異事が明らかとなり、一方 ACTH とコに就ても、竹田[14] の 89 例の患者実験から ACTH の好酸球減少作用の方が強い事実が挙げられており、両者の作用機転の相異が漸く注目されつつある。

更に於て ACTH の副腎皮質の介しない生理作用も問題にならなければならぬが、之に就ては須賀[111] が脱離素血液に ACTH を試験管内で添加し、好酸球及び他の白血球に数的、質的に全く変化のない事を認め、又 Cape（1952）[10] が一定の実験の中で末梢血液に ACTH を加えて好酸球の形態変化が見られなかった事を報じている程度に過ぎない。兹に於て私は直接骨髄組織培養に ACTH を添加した結果、前節に述べた如く、の場合に見られた様々な好酸球細胞機能障害作用を全く見ず、偽好酸球にも勿論障害作用を認めなかった。更に好酸球では著明な遊走機能の亢進を招き、従って遊走速度は増大し、透後期に示す如く好酸球運動形態の所、と特性的細胞機能亢進像を認めた。更に好酸系数に就ては多少その密度の上昇が見られるが、偽好酸球に於てはそれを示すasz血球を増減する見られ、偽好酸球に於ては平均遊走速度の上昇を見るのが好酸球程ではなく、その密度も対照と大差がない。

以上要するに ACTH は直接白血球に作用した場合、特に好酸球に対して細胞機能促進的に働く事が判ったのである。此の様にコ、
の好酸球障害作用と比較して正に反対の結果を見る事は興味ある事であり、全く想像もつかなかった事である。然し之が生体内に於て行われた場合、即ちACTHを注射した場合の好酸球に対する作用機序は、もとより副腎皮質を介して分泌された27種に及ぶ皮質ステロイド中の糖質コルチコイドによる作用が主体であり、又最も強力ではないが、今述べた培養基内でのACTH の直接作用も又一部に含まれている事を見逃すわけにはゆかまい、然し乍ら生体にACTH を投与した場合、ACTH によって分泌される糖質コルチコイドとACTH の直接効果を比較すれば、ACTHの方は非常に微弱であるため糖質コルチコイドの作用に遮られてしまうものと思われ、又一側にはACTH の直接作用発現迄に或程度の時間を要するため、その作用が及ぶ以前に糖質コルチコイドの作用が強大に行われるものと考えられる。

現在一般にACTH，コ．と呼び騒れて、ACTH 即もコ．の作用であると考えられる傾向もあるが、之は一応生体内オルガ系としては首肯し得る事実ではあっても、一方先述の培養基内の直接作用及び第四編に述べる如き病的骨髄培養に対するACTH の直接効果、更に又臨床的にコ．で効果のみられなかったAgranulozytose18)117)56)，又Hypoplastische anämie34)107)'에ACTHで使用して軽快又は治癒せる例（吾々も報告した）をexperienceし得る点等から見て、ACTH に於てはコ．を介する作用以外にその骨髄に対する直接作用がある事も忘れるわけにはゆかまい、又上述述べた様にACTH は好酸球機能を亢進させる作用があるにも拘らず、生体にACTH を投与した場合、好酸球に障害的に作用する。以上に強く好酸球減少を示す事実から考えて、ACTH-好酸球減少はコ．単独によるのではなく他のcompoundの協力が必要であろうと考えられるのである、此人の点に就ては次編に詳述する。

第六章 結論

以上私は骨髄体外組織培養法を用いて、ア，コ，ACTH好酸球減少の骨髄に於ける発生機転に就て追求し、次の如き結論を得た。

（1）アドレナリン-好酸球減少の骨髄に於ける機転は、好酸球の機能低下による骨髄静脈溝の出砂障害又は抑制に基づき、骨髄内好酸球の産生抑制には基かない。

（2）コーチゾン-好酸球減少の場合は好酸球の機能低下に基く面と、骨髄実質障害に基く面とがある。

（3）アドレナリン、コーチゾン共、好酸球減少作用に対してはその量的関係が重要である。

（4）ACTHの骨髄直接作用としては特異な好酸球機能亢進作用あり、好酸球細胞分裂には影響がない。

（5）偽好酸球はアドレナリン、コーチゾン、ACTHの摂れにても障害作用を受けないが、只アドレナリン、コーチゾンの非常に高濃度の場合に於て障害され、特にコーチゾンにて強く障害される。

観察するに当たり終始御恩篤なる御指導及び御授興を賜った恩師平木教授並びに大藤助教授に深甚なる謝意を表す。
Department of Internal Medicine, Okayama University Medical School
(Director: Prof. K. Hiraki)

Studies on the Effect of Adrenalin, Cortisone and ACTH on the White
Blood Cell especially on the Eosinophilic Leukocyte by
the Tissue Culture of the Bone Marrow
—— mainly on the mechanism of eosinopenia ——

Part (I)

A Study on direct influences of adrenalin, cortisone and ACTH
on the white blood cell especially on the eosinophilic
leucocyte in rabbit bone marrow culture

By
Shinro YAMAMOTO

Using the tissue culture of the bone marrow, I have studied the mechanisms of adrenalin
cortisone and ACTH eosinopenia in the bone marrow. The results are as follows:

(1) For the mechanism in the bone marrow, adrenalin eosinopenia is based on checking
or migratory impossibility of the eosinophil to the bone marrow sinus, and not on the reduced
production of the bone marrow.

(2) Cortisone eosinopenia is caused from the hypofunction of the eosinophil or from
developmental disturbance of the bone marrow parenchyma.

(3) Adrenalin or cortisone eosinopenia greatly depends upon its quantitative proportion
in the medium.

(4) For the direct effect on the bone marrow, ACTH causes the hyperfunction of the
eosinophil in a particular manner but has no influence upon the cell division of the eosinophil.

(5) The pseudoeosinophil is free from hypofunctional action and developmental disturbance
of adrenalin, cortisone, or ACTH, except the case of high concentration of adrenalin as well
as cortisone.