感作動物腎器組織の試験管内における過敏症の発現とその電位に就いて

第 1 編

腎器組織の過敏症現象と電位時間曲線

岡山大学医学部微生物学教室（指導：村上 勝教授）

近 祖 康 喜

【昭和33年6月21日受領】

目 次

I. 緒 言

II. 実験材料及び実験方法

III. 実験成績

1) 測定開始後30分後に誘発血清を入れた場合
2) 測定開始1時間後に誘発血清を入れた場合
3) 測定開始2時間後に誘発血清を入れた場合

IV. 実験材料及び実験方法

実験材料は、馬血清にて感作せる体重300g前後のモルモット肝臓及び腎臓を使用し、感作馬血清量は0.25ccで、腹腔内に注射した。感作期間は3週〜4週間（多くは23日前後）とし、実験装置は、当教室山本、秋田等が「のみの発育期電位測定」に使用した装置と同一のものを用いた。組織培養液は Tyrode 液（pH7.6）を使用した。

電位測定方法

剖出した感作モルモットの肝臓及び腎臓を冷却した Ringer 液（pH7.6）にてよく洗浄し、無菌的に行い、薄切片を作り、3 ロコルペン 30 ccの Tyrode 液内に入れて流動パラフィンにて空気と隔断して測定した。測定時間は、10分毎に行ったが誘発血清注入直後

I. 緒 言

過敏症現象に於ける実験的観察は、古く Magen-diel(1893)、Von Behring(1893)、Flexner(1894)等によって行われ、更に Rich(1902)によって、イソギンチャクの毒素を用いて犬の免疫に関する研究に進し、系統的に観察が行われて以来過敏症現象はあらゆる方面より研究が行われて来た。Loening(193), Aberden(1) u. Werthein, Bingler(5), Bostrom(6), 中沢(7), 川原(8)等は、剖出臓器が過敏症反応を顕著に発現することを明にし、Deneck(9), Man-wareing(10), 大村(11), 荒木(12), Simonde(13) and Brandes, Mauenter(14) u. Pick 等は過敏症ショックの発来に対し臓器の重要性を指摘し、又 Bürgs(15)は血清過敏症ショックの際、臓器の組織呼吸の減少を述べている。過敏症ショックの発来は各種臓器に変化が見られるが、杉山(16)は各種臓器変化の著明なもののは肝、脾、淋巴腺、腎で居て、肺、心臓、脳丸は著に次ぐと云っている。

それ故臓器細胞の変性を著し除去代謝にも相当何等かの変化が発現することは推測される。この方面では Warburg を用いて過敏症に於ける組織呼吸を検討している。佐々木(17)も実験を行っている。又荒木(18)は家兎を用いて生体の酸化還元電位を測定し、電位の低下を来たすと報告している。

著者は、先に同研究者荒木(18)等と行った研究（動物実験組織の体外電位測定に就いて）に於ける電位測定法を利用したならば、過敏症時の生活組織の代謝の変化を電位変化として観察することが可能ではなかったと考えて、本研究を行った。

II. 実験材料及び実験方法

実験材料は、馬血清にて感作せる体重300g前後のモルモット肝臓及び腎臓を使用し、感作馬血清量は0.25ccで、腹腔内に注射した。感作期間は3週〜4週間（多くは23日前後）とした。

実験装置は、当教室山本、秋田等が「のみの発育電位測定」に使用した装置を一通りのものを用いた。組織培養液は Tyrode 液（pH7.6）を使用した。

電位測定方法

剖出した感作モルモットの肝臓及び腎臓を冷却した Ringer 液（pH7.6）にてよく洗浄し、無菌的に薄切片を作り、3 ロコルペン 30 ccの Tyrode 液内に入れて流動パラフィンにて空気と隔断して測定した。測定時間は、10分毎に行ったが誘発血清注入直後
より3分毎に測定し大体安定した電位を得る迄測定した。

第1図は図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.三段階に下がり30分で測定した電位に復し後3時間まで降下している。

0.05cc注入の電位は血清注入直後より3分で急激に100mV.までに上昇し1時間後にして注入前の電位に復し、後3時間で降下し、0.01cc注入の電位は血清注入直後より40mV.まで上昇し30分にして血清注入前の電位に復し後3時間で降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

第2図は図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。

図の如く肝臓0.1cc注入の電位は起始電位より急激に50mV.の電位上昇が3分で測定した電位に復し後3時間まで降下している。
第3図は、誘発血清量 0.1cc, 0.05cc, 0.01ccを注入した肝臓に於ける成績である。誘発血清 0.1cc注入の場合は、46 m.V.上昇し、0.05ccは 75 m.V.、0.01ccは 45 m.V.と各々直後に急激な電位変化を来たし、対照は上昇せずに徐次下降している。対照に於ける誘発血清量 0.1ccを注入した電位は、注入後15分にして 35 m.V.の上昇を示し、又 0.05cc注入の場合は10分にして 20 m.V.の電位を記録した。対照の電位は変化なく緩慢なる下降を示した。しかし肝臓の場合は誘発血清注入による電位の変化は著明でなく判然しないものも見られる。

Ⅱ）測定開始1時間後に誘発血清を注入した場合。

第4図は、誘発血清量 0.1cc, 0.3ccを注入した肝臓の成績で、誘発血清注入直後 0.1ccの方は20 m.V., 0.3cc注入は25 m.V.と各々上昇し、後徐次下降した。

対照は変化なく徐次下降している。

第5図は、誘発血清量 0.3cc, 0.1cc, 0.03cc注入の成績である。誘発血清 0.3ccの場合の電位曲線は血清注入後40 m.V.上昇し後徐次下降し0.1ccの電位曲線は血清注入後直ちに50 m.V.上昇し後徐次下降し0.03ccの電位曲線は血清注入後直ちに30 m.V.上昇し後徐次下降している。

第6図は、誘発血清量 0.3cc, 0.1cc, 0.03cc注入の成績である。誘発血清 0.3ccの場合の電位曲線は血清注入後40 m.V.上昇し後徐次下降し0.1ccの電位曲線は血清注入後直ちに50 m.V.上昇し後徐次下降し0.03ccの電位曲線は血清注入後直ちに30 m.V.上昇し後徐次下降している。
第7図

注入口直ちに60 mV。上昇し断次下降し、0.03 cc
の電位曲線は血清注入後直ちに25 mV。上昇し後
速に安定する電位を示した。0.003 cc の電位曲線
は血清注入後直ちに60 mV。上昇し後速に安定
する電位を示した。
対照は断次下降している。

第9図は誘発血清注入は0.1 cc、0.05 cc、0.01 cc
の成績である。誘発血清0.1 cc の電位曲線は血清
注入後直ちに50 mV。上昇し、0.05 cc の場合も同
様血清注入後直ちに35 mV。上昇し、0.01 cc の場
合も同様血清注入後直ちに60 mV。上昇し後速か
に下降した。対照は断次下降している。

第10図

V) 脱感作実験
脱感作の状態を誘発電位曲線の上から求索した。
第10図は、馬血清0.25 cc を接種して感作した後,
馬血清0.5 cc を除々に用いて脱感作を行ったモル
モットの肝臓薄切片を用い、誘発血清0.1 cc 注入せ
る場合の成績であるが、全例とも殆ど上昇を示さ
ず断次下降している。

第11図は、感作血清量0.25 cc、脱感作血清量
0.5 cc を用い、誘発血清0.1 cc を注入した場合の
成績であるが全例とも殆ど電位の変動を示さず
感作動物臓器組織の試験管内における過敏症の発現とその電位に就いて

断次下降している。
これは脱敏作が行われていた為に、過敏症を起こ
なかったものと考えられる。

第11図

図

血漿

1) Magendie, Von Behring, Flexner. アナフィ

2) Richt. 結論

1) 感作モルモットの肝臓薄切片の電位時間曲線は血清注射により電位の上昇を示した。これは過敏

2) 腎臓の電位時間曲線は、誘発血清による過敏症ショックの電位上昇は軽度で変化しなかった。

3) 誘発血清灌流期と電位測定開始との間の30

4) 血清注入量が0.3〜0.003の間においては過

5) 脱敏作るモルモットの臓器薄切片に誘発血

文

1) Magendie, Von Behring, Flexner. アナフィ

2) Richt. 結論

3) Loening Arch. f. exp. path. u. pharmak.
Anaphylaxis and Oxidation-Reduction Potential

I: Potential-Time Curve of Sensitized Animal Organ Tissuea in in vitro Anaphylaxis

By

KōKi Chikamoto

Department of Microbiology, Okayama University Medical School
(Director: Prof. Dr. Sakae Murakami)

In order to study the metabolic aspects at the time of anaphylaxis, the author investigated the potential-time curve of animal organ tissues in in vitro anaphylactic Shock. Thin slices of the liver and the kidney of the guinea-pig (about 300 g) sensitized with the horse serum (0.25 cc) were suspended in Tyrode solution and then the horse serum was poured into it, thus causing anaphylactic shock. The results are summarized as follows:

1) Pouring of the horse serum caused the rise of potential of the sensitized liver slice, which might be considered to be caused by anaphylactic shock.

2) In the potential-time curve of the kidney, no noticeable rise was caused by pouring the serum.

3) The rise of potential by pouring the serum did not vary for 30 to 150 minutes after starting the measurement of potential.

4) The variation of the amount of the serum from 0.3 to 0.003 cc caused no noticeable difference in the rise of potential.

5) In the desensitized organ slice of the guinea-pig, pouring of the serum showed no change but a gradual fall in the potential-time curve.