運動負荷が放射線障害に及ぼす影響に関する実験的研究

第 2 編
放射線照射直前又は照射後の運動負荷が、生存率、体重変化に及ぼす影響

岡山大学医学部衛生学教室（主任：大平昌彦教授）

岡 平 和 蒼

（昭和36年8月14日受稿）

第1章 緒 論
放射線被曝個体の予後を左右する条件として、色々なもののが想定されるが、その1つとして被曝個体の肉体的労働程度を測定するかを検討する目的で、著者は第1編で所説を用いてX線照射後運動負荷を行い、生存率、体重及び血液成分の変化を、照射の前と比較して強い変化を示す成分と、大差を示さない成分とのあることを見たが、特に生存率における有意差の原因となる要因を把握するには至らなかった。本編では、放射線被曝の前後、特に直前の歪度の運動負荷が被曝個体の予後に如何なる影響を与えるかを追求、照射後運動負荷を行った場合の間の差異について検討し、又、薬物による代謝亢進との相違についても検討を試みた。尚、併せて、運動負荷程度を知る目的で呼吸ガス分析を行った。

第2章 実験方法

第1節 実験用動物
実験用動物として体重平均23 gの健康なC57-BLマウスを用い、次の7群に分けた。
① 照射前30分間運動負荷群（REpre-30 m）
② 照射前1時間運動負荷群（REpre-1 h）
③ 照射前2時間運動負荷群（REpre-2 h）
④ 照射後運動負荷群（REpost）
⑤ 運動対照群（RC）
⑥ 照射対照群（RC）
⑦ 甲状腺剤「チラーデン」注射群（TR）
①～③は照射前30分間、1時間及び2時間の運動負荷を行った群。
④は照射後每日1時間、1週間に6日の割合で30日間連続運動を負荷せめた群。
⑤は照射後運動群の対照として、照射を行なわずして同様の運動を負荷せめた群。
⑥は全般に対する照射対照群。
⑦は甲状腺剤「チラーデン」を体重10 gに対し0.2 cc注射し、後制を亢進せめた後X線照射を行いその影響を検する目的で行った。尚、「チラーデン」0.2 cc中には有機鉄度10.7を含む。

第2節 放射線及び照射
放射線としてはX線を用いた。東芝KXC-18型X線装置で、管圏電流200 K V、電流25 mA、0.5 mm Cu+0.5 mm Alのフィルターを使用し、焦点距離間隔50 cm、分間照射量99 rで、総線量600 r、660 r及び840 rの全身一時照射を行った。尚、正確を期するため、Victoreen Condenser r-Meterを使用して照射量を算出した。照射に当たって動物は小孔を開けた箱中に置いた。又、甲状腺剤「チラーデン」注射群は、甲状腺剤の効果発現時には塩伏が存在し、大量一時投与の場合、最高代謝量を示すのは投与後約１週間であるから、1週間以内の亢進状態を観察し、その後840 rのX線照射を行った。

第3節 運動負荷法
運動負荷は周囲80 cmの円筒状振子車を1分間に8回転、6.4 m/minの速さで回転させ、この内でマウス群を疾走せめて行った。（第1图）

第4節 ガス分析法
ガス分析には別に作製した円筒80 cmの気密室内酸素を1分間8回転、6.4 m/minの速さで回転し（第1図参照）、この中で運動負荷の各群1匹ずつを疾走せめ、運動負荷を要しない群は回転を行わずに、呼吸ガスを採取し、Scholander微量ガス
第1図 (1) マウス運動器

(1) 円筒状操子車 （2）気密室 （3）気密室内操子車 （4）気密室蓋 （5）温度計 （6）空気孔 （7）ゴム球 （8）蓋とめ金

第1図 (2) マウス運動器略図

マウス運動器

スマフォン分析器を用いて酸素消費量、炭酸ガス排出量を測定した。尚、測定時気温は25℃±2℃で一年中で最も安定した平均気温を示す季節を選んで測定した。又、運動負荷を要しない測定の場合、マウス1匹を入れるに必要にして十分な大きさのホット舎中に入れ安静を維持した。食が代謝に及ぼす影響は大であるので、食はオリエンタル製母会社製の固形飼料（NMF）を用い、常時マウスの好む時に摂取得る知くした。かくすると鼠の習性として夜間によんで食物を摂取し、実験時間中は食事の影響は殆どないと考えられる。

著者の実験におけるR.M.R.の算出方法を述べるに当り、R.M.R.について説明すると、生体が通常の環境下で運動を一定時間続けられた時のエネルギー代謝の変動を模倣的に描くと第2図の如く表わされる。四辺形a, b, f, gで囲まれた部分が、正常覚醒時（最低水準）のエネルギー代謝量、即ち基礎代謝量である。次に四辺形a, b, c, d, e, gで囲まれた部分は同一環境下で椅子に腰を掛けて安静を保持した場合に消費されるエネルギーを即ち安静代謝量を表わしている。さらにa, b, c, d, e, gで囲まれた部分は一定時間（o-mまで）運動を行い、その後運動による影響が消失するまでの間（m-gまで）の全消費エネルギーを表わしている。この全消費エネルギーより同時間内の安静代謝量を引いたもの、すなわちb, c, d, eで囲まれた部分は運動代謝量に相当する。これは運動そのものに費やされるエネルギーを表わしている。この運動代謝量（b, c, d, e）の運動時間内基礎代謝量（四辺形a, b, l, m）
運動負荷が放射線障害に及ぼす影響に関する実験的研究

に対する割合がエネルギー代謝率（R.M.R.）である。即ち，

\[
R.M.R. = \frac{（作業時間消費エネルギー） - （安静時消費エネルギー）}{基礎代謝} \tag{1}
\]

または、酸素消費量で表わすと

\[
R.M.R. = \frac{（全測定時間内運動時酸素消耗量） - （全測定時間内安静時酸素消耗量）}{運動時間内基礎代謝時の酸素消耗量} \tag{2}
\]

第2回 運動代謝量模型図

R.M.R. = \frac{N-M}{運動時間 × M} \tag{3}

第3章 実験成績

（1）ガス分析成績

ガス分析の成績は第1表に示す如くである。

ⅰ）RC：照射の前後において、炭酸ガス排出量，

<table>
<thead>
<tr>
<th>症状</th>
<th>CO₂排出量</th>
<th>O₂消費量</th>
<th>R.M.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>前 45.3</td>
<td>59.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後 46.7</td>
<td>56.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 -3.97%</td>
<td>-5.70%</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>前 35.8</td>
<td>44.0</td>
<td>0.7038</td>
</tr>
<tr>
<td></td>
<td>後 44.6</td>
<td>59.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 24.67%</td>
<td>34.17%</td>
<td></td>
</tr>
<tr>
<td>Repre-30m</td>
<td>前 42.7</td>
<td>48.7</td>
<td>0.6666</td>
</tr>
<tr>
<td></td>
<td>後 51.7</td>
<td>65.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 21.08%</td>
<td>34.50%</td>
<td></td>
</tr>
<tr>
<td>Repre-1h</td>
<td>前 35.8</td>
<td>44.0</td>
<td>0.7038</td>
</tr>
<tr>
<td></td>
<td>後 44.6</td>
<td>59.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 24.67%</td>
<td>34.17%</td>
<td></td>
</tr>
<tr>
<td>Re pre-2h</td>
<td>前 33.3</td>
<td>43.4</td>
<td>0.7492</td>
</tr>
<tr>
<td></td>
<td>後 42.9</td>
<td>61.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 28.83%</td>
<td>41.24%</td>
<td></td>
</tr>
<tr>
<td>Re post</td>
<td>前 30.6</td>
<td>42.6</td>
<td>0.7186</td>
</tr>
<tr>
<td></td>
<td>後 38.0</td>
<td>53.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>増加率 24.13%</td>
<td>25.17%</td>
<td></td>
</tr>
<tr>
<td>第1日</td>
<td>前 33.2</td>
<td>42.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後 36.5</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>第2日</td>
<td>前 35.9</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後 35.6</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td>第3日</td>
<td>前 35.8</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後 43.1</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>第4日</td>
<td>前 43.9</td>
<td>60.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後 63.2</td>
<td>70.2</td>
<td></td>
</tr>
<tr>
<td>第5日</td>
<td>前 33.2%</td>
<td>42.99%</td>
<td></td>
</tr>
</tbody>
</table>

で表わされる。

著者の実験では基礎代謝時の酸素消費量を求め得なかったので，次に述べる方法で得た安静時酸素消費量を以って基礎代謝時の酸素消費量に代えた。

即ち，最初に外気（教室内空気）の酸素量（容量％）を求め，気密室とゴム球内採取量（気密室に附属する空気孔にゴム管を介して2ケのゴム球を使続し，1球は真空，他球は外気を必要量採取し，両球の間に気密室の空気を往復させて気密室内空気の混和を計ると同時にサンプルを採取するために利用したゴム球内採取量）を加えた容積内に含まれる酸素量（A c.c.）を求めた。次にマウスを前述の金網篭中に入れて暫時安静を保たし、そのまま気密室内に入れ，運動負荷の時間より1時間後気密室内で呼吸させ，運動終了後1時間目に気密室内空気を十分に混和して気密室に移したゴム球に採取し，Scholander 微量ガス分析器で該空気中の酸素量（B c.c.）を求め，A c.c. - B c.c. = M c.c.を全測定時間内酸素消費量を求めた。3月，再び気密室及びゴム球に外気を入れ，マウスを金網篭から出して気密室内飼育庫の中におき，飼育庫を前述の通りで回転させて運動負荷を行った。運動負荷後1時間マウスは，その呼吸が運動前に回復するまで気密室内において，前述の方法で気密室内空気を採取し，該空気中の酸素量（C c.c.）を求め，A c.c. - C c.c. = N c.c.は全測定時間内運動時酸素消費量である。しかして，この運動によるR.M.R.を次の式で求めた。
酸素消費量共に大差を認めない。
ii) EC：1時間の強い運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は3例平均値24.67％、34.17％である。R.M.R.の算定式の基礎代謝量の代わりに該当時における安静時（24.67％、34.17％を用いて同温度における運動代謝量を除した値は0.7038である。）（3式による、以下同様）
iii) REPrest-30m：30分間の強い運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は3例平均それぞれ21.08％、34.50％である。R.M.R.の値は0.6666である。
iv) REPrest-1h：1時間の運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は3例平均それぞれ28.83％、41.24％である。R.M.R.の値は0.7492である。
v) REPrest-2h：2時間の運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は3例平均それぞれ24.67％、34.17％である。R.M.R.の値は0.7088である。
vii) REPrest：照射後1時間の強い運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は2例平均それぞれ24.67％、34.17％である。R.M.R.の値は0.7186である。

vi) REPrest-1h：1時間の運動負荷により、炭酸ガス排泄量、酸素消費量共に増加を示し、各々の増加率は2例平均それぞれ28.83％、41.24％である。R.M.R.の値は0.7492である。

以上のような運動負荷による炭酸ガス排泄量、酸素消費量の増加率は平均値24.68％、33.85％である。R.M.R.の算定式の基礎代謝量の代わりに安静時（24.67％、34.17％を用いて得た値は平均値0.7084である。すもこのR.M.R.値は人間の場合と比較すると極めて低い値である。それは基礎代謝量の代わりに、前述の割に安静時（24.67％、34.17％を用いたことに原因があると考えられる。ちなみに、検査する結果、酸素消費量20.51％であり、著者の成績とはほぼ同じ程度である。（詳細は後の（2） 生存率試験）

（2） 生存率試験

各群の生存率曲線は第3図に示す如くである。
600 r 照射群
EC：30日間生存したのは9匹中8匹であった。30日生存率は89％であった。
RC：30日間生存したのは20匹中14匹であった。30日生存率は70％であった。

REPrest：30日間生存したのは20匹中15匹であった。30日生存率は75％であった。
REPrest-1h：30日間生存したのは20匹中19匹であった。30日生存率は95％であった。

30日生存率についてはR.A. Fisherの直線確率計算法により差の検定を行うと、5％限界で
① RCとREPrestの間……有意差あり
② REPrestとREPrest-1hの間……有意差あり
③ RCとREPrestの間……有意差なし
660 r 照射群
EC：30日間生存したのは9匹中8匹であった。30日生存率は89％であった。
RC：10匹中9匹の生存例はなかった。30日生存率は0％であった。
REPrest：10匹中9匹の生存例はなかった。30日生存率は50％であった。

30日生存率についてはR.A. Fisherの直接確率計算法により差の検定を行うと、5％限界で
① RCとREPrestの間……有意差あり
② REPrestとREPrest-1hの間……有意差あり
③ RCとREPrestの間……有意差なし

840 r 照射群
EC：30日間生存したのは9匹中8匹であった。30日生存率は89％であった。
RC：10匹中9匹の生存例はなかった。30日生存率は0％であった。
REPrest：10匹中9匹の生存例はなかった。30日生存率は50％であった。
REPrest-1h：30日間生存したのは10匹中1匹であった。30日生存率は10％であった。
REPrest-30m：30日間生存したのは10匹中1匹であった。30日生存率は20％であった。
REPrest-1h：30日間生存したのは10匹中1匹であった。30日生存率は50％であった。
REPrest-2h：30日間生存したのは10匹中1匹であった。30日生存率は33％であった。

TR：10匹中10匹の生存例はなかった。30日生存率は0％であった。

30日生存率について、R.A. Fisherの直接確率計算法により差の検定を行うと、5％限界で
① RCとREPrestの間……有意差なし
② REPrestとREPrest-1hの間……有意差あり
③ REPrestとREPrest-2hの間……有意差あり
④ REPrestとREPrest-30mの間……有意差なし
第3図 生存

(1) 600γ

(2) 660γ

(3) 840γ

(3) 体変化率（840γ照射群）

体重変化は第図に示す知くである。
i) EC: 全経過を通じて、殆ど変化を認めなかった。
ii) RC: 初期には急速な減少を、1週間目以後は緩徐な減少を示し、全く回復の傾向を示さなかった。
iii) REpost: 1週間目より2週間目にかけて減少を示したが、17日目以後は回復傾向を示す傾向を認めるが、これは生きた数の少なかった例の値であるので例外的なものであろう。
iv) REpre-30m: 2週間目まで減少を示すが、その後は回復傾向を示した。
v) REpre-1h: 2週間目の終りから、3週間目の初めまで減少を示したが、その後は急速に回復した。
vii) TR: 1週間の終りまで著変を示さないが、2週間目の初めより急速に
示す。
Kimeldorf et al.10) はラットを X-線照射後、水槽
内で強制游泳運動を負荷し、その生存率は
低下すると述べ、Smith, F. & Smith, W. W.7) は
マウスを X-線照射後に円筒状運動器内で疾走させ、
照射後運動群も照射のみの群と生存率において差は
認められなかったと述べている。又、Brown &
White8) はラットを照射前に游泳運動を負荷し、
疲労句微の間に 60Co 照射を行うと、照射後游泳運
動を負荷させた群より生存率の良好なる結果を示
し、照射時に Anoxia の状態にあれば生存率は高
くなると結論している。
放射線の生物に対する作用機構として、2つの説
が唱えられている8)、即ち、
① 標的説 (Target theory)
② 間接説 (Indirect theory)
である。この中、間接説によれば放射線が生物作用
を来すのは、生物体内部としての水が活性化され、
この活性化された水が二次的に作用して障害を惹起
すると述べられている。放射線による水の活性化に
ついて諸説があるが、Lea10) によると、

\[
\text{H}_2\text{O} + \text{O}_2 \rightarrow \text{HO}^+ + \text{OH}^- \\
\text{HO}^+ + e \rightarrow \text{H}^+ + \text{OH}^- \\
\text{e} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ \\
\text{H}_2\text{O}^- \rightarrow \text{H}_2\text{O} + \text{H}^+ \\
\]

結局 \(\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^- \).

となり、unpaired electron を持つ酸

化離基が生じ、この活性によって二次的に
溶質が作用を受ける。

もしも \(\text{O}_2 \) が消失していると、

\[
\text{H}_2\text{O} + \text{O}_2 \rightarrow \text{HO}^+ + \text{HO}_2^- \\
\]

となら、これらの activated free
radicals による酸化が生体細胞内に
起こると説明されている。かの如く、
酸化的遊離基の生成には生体内溶存酸素
が大きな要因となっている。この理論に
基いて放射線障害予防に、低酸素環境下
に動物を試した実験11)、又は、Tissue
Anoxia を惹起させる薬剤を用いる学
者も多数ある12)14)16)。一方、強い運動
負荷によって動物は酸素負債の状態を惹起し16)、生
体組織の酸素張力は低下を来す16)。かくて、強い
運動負荷を与えた動物は酸化的遊離基の生成がおさ
されることになり、放射線障害はより ✓くくなるこ
とが想定される。著者等の実験で、照射前運動群が照射
対照群より生存率の良好なる結果を得たのはかかる
事実に基づくものと思考する。

代謝量判定の為の呼吸ガス分析法には種々のもの
があり、総合18) は氏の考按する方法により、マウス
の安静時酸素ガス排泄量は体重 10 g につき 1 時間で
約 37.7 cc であると述べ、安東・田嶋19)、佐藤
他20) は \(\text{CaH} \) 系マウスの安静時吸気酸素ガス
排泄量及び酸素消費量はそれぞれ、30.6 cc/10 g/h、
49.2 cc/10 g/h と述べている。又、Smith, W. W.
& Smith, F.21) は NIH 系マウスの酸素消費量
は 41.4 cc/10 g/h と述べている。相浦22) は常温
(19℃) におけるマウスの安静時酸素消費量は
61.2 cc/10 g/h、又、2.4 m/min の疾走を 5 分間運
動負荷として与え、R. M. R. の算定式の基礎代謝
の代りに該温度における安静時代謝量を用いて同温
度における運動代謝量を除した値 0.51 であると述べ
ている。
著者の実験では安斎時炭酸ガス排除量及び酸素消費量はそれぞれ 36.7 cc/10 g/h, 46.3 cc/10 g/h で、炭酸ガス排除量は筋力の値に近く、酸素消費量は佐藤他者の値に近い。又、運動負荷による炭酸ガス排除量、酸素消費量の増加率は平均それぞれ24.68％、33.85％であり、R. M. R. の算定式の基礎代謝量の代りにエネルギー温度における安静時基準温度を用いて同温度における運動代謝量を除した値は、平均70844であった。これは相脇の値より高い値であるが、疲走速度が大きであるためであろう。又、著者の実験で、酸素消費量、炭酸ガス排除量及び R. M. R. は運動負荷に殆ど関係をない（30分、1時間、2時間の順に増加しているように見えて、有意の差を認めなかった）ほぼ等しい値を示したことは、前述の方法で運動負荷をした場合、その強度が大体一定に保たれていると考えてよいであろう。しかし、実験が十分でもないが、840 g 注射の場合に推察すると、注射後 30 分以内に生存率は最大で運動前より著しく増加している。これは、注射前の運動負荷が生存率に対して好影響を与えることに対応することに対応する明確な事実も、前述の如き Anoxia が増大されるときによるとの解釈を必要とする。特に不都合な現象とは思われない。何となれば、運動直前における酸素負荷の状態に対して組織における酸素分圧は、一定量の運動の後には運動強度がほど等しいければ大差はないと考えてよいであろうからである。

第5章 結論
放射線曝露の前後における強度の運動負荷が如何なる意義を有するかを検討する目的で、C57-BL マウスを
① 照射直前30分間運動負荷群
② 照射直前 1 時間運動負荷群
③ 照射直前 2 時間運動負荷群
④ 照射後運動負荷群

放射前運動群は照射対照群及び照射後運動群にて生存率に良好であった。
i) 照射前運動群の照射後の生存率は必ずしも照射前の運動強度に比例しなかった。
ii) 照射後運動群の生存率は照射対照群と差がなかった。

v) 照射前運動群の照射後の生存率は非常に増加し、酸素消費量は平均33.85％の増加を認めた。

vi) 照射前運動群の照射後の生存率は必ずしも照射前の運動強度に比例しなかった。

vii) 照射前運動群の照射後の生存率は照射対照群と差がなかった。

体の変化は、照射対照群では減少一途をたどるが、照射前運動群は照射後 3 週間目以後には回復した。

viii) 照射前運動群の「チラーデン」注射群は、照射後 2 週間目以後体重の急減を認めた。

著者が得た結果にて、照射前後に運動負荷の有無による酸素消費量、炭酸ガス排除量の増加率の差は、著者及他の研究者と一致した。このことは、生体全体としての代謝反応が関係ありと考えられた。
Experimental studies on the effect of exhaustive physical exercise against radiation injury.

Part 2

By

Kazuma Okahira

The Department of Hygiene, Okayama University Medical School.
(Director: Prof. M. Ohira, M.D.)

C57-Black female mice were divided into the next 7 groups for the purpose of examining the effects of the exhaustive physical exercise before and after the irradiation.

Group 1. Exercised for 30 minutes directly before the irradiation (RE pre-30 m.)
Group 2. Exercised for 1 hour directly before the irradiation (RE pre-1h)
Group 3. Exercised for 2 hours directly before the irradiation (RE pre-2h)
Group 4. Exercised for 1 hour after the irradiation (RE post) This exercise was continued for 30 days at the rate of 1 hour per day and 6 days per week after irradiation.

Group 5. Exercised control (EC) This exercise was the similar as that in Group 4.

Group 6. Radiated control (RC)

Group 7. “Thyradin” injected (TR)

“Thyradin” (thyroid preparation) was injected 0.2 c.c. (contains 10 r of iodine) per 10 grams of body weight, and then the animals were exposed to X-ray on the 7th day after irradiation. Exercised groups were made to run in the cylindrical tread-mill (80 cm in circumference, 8 rotations per minute, i.e. the animals have to run at a speed of 6.4 m per minute).

Irradiated groups received 600 r, 660 r and 840 r of X-ray at 99 r per minute.

Gas analyses were done in order to evaluate the metabolic level of the exercise on one mouse in each group which was made to run in another tread-mill of the same diameter, rotating in the same speed as one described above, and located in an air-tight chamber shown in fig. 1. The air sample from this chamber was analysed with Scholander’s apparatus.

This results are as follows:

1) The metabolism increased by the exercise showing 33.85% (mean) increased of the oxygen consumption.

2) The metabolism was accelerated gradually by the “Thyradin” treatment arriving the maximum around the 6th day after the injection, showing 42.99% of the increase of oxygen consumption.

3) The survival rate in the groups which were exercised before the irradiation was higher than that in the group of radiated control and the group exercised after the irradiation. The difference of the survival rate between the groups exercised before the irradiation and the groups exercised after the irradiation was significant (P<0.05).

4) The survival rate in the groups which were exercised before the irradiation was not in proportion to the quantity of the exercise before the irradiation.

5) The metabolism was increased by the injection of “Thyradin” and lowered the survival rate.

6) The weight in the group of radiated control dropped down day by day, but in the group exercised before the irradiation began to recover after three weeks of irradiation.

7) The weight in the group injected “Thyradin” decrease extremely 2 weeks after the irradiation.