ep 系マウスの Calcium 代謝に関する研究

第２編
ep 系マウスにおける ⁴⁵Ca 代謝に関する研究

（本論文の要旨は第36回日本生化学会総会において発表した）

岡山大学医学部第1(田中)外科教室（指導：陸内敦之助教授）
医学士 田 中 正 良

昭和38年8月20日受領

第1章 緒 言

ep系マウスの尿中 Ca 排泄量は、第1編において述べたごとく正常マウスのそれよりも多いが、その原因は明らかでない。産婦と Ca 代謝ともっとも関連する疾患としては tetany がある。これは副甲状腺機能低下によるものであり、この場合は血清 Ca 濃度は正常値の約1/3にまで減少するが、ep 系マウスの場合には第1編において明らかにとくこのような低下は認められないし、同時に骨、筋、脳の Ca 含量は ep 系マウスでは筋においてやや減少が認められる以外に、骨、脳には正常マウスとの間に何ら有意差を認められなかった。従って、ep 系マウスの場合は別の機序を考えなければならない。

Ca の体内における作用としては、神経細胞の興奮に与与することと骨代謝をなすことおよびに actinomyosine-ATPase、apprase、phospholipase などの activator として、あるいは enolase、dipeptidase、flavokinase などの inhibitor としての作用が知られているが、これらの酵素のうちには骨における興奮～抑制過程に係りしていると考えられるものはない。

本編においては Ca の化学的定量法によっては変化が認められない程度の微量の変化を生体内測定とを詳細に検索し、ep 系マウス脳における Ca 代謝異常の解明の手がかりをうるため、⁴⁵Ca を用いた tracer 実験により正常時および産婦時における Ca の代謝を検討することにした。

第2章 実験材料

第1項 CF-1 系マウス
各マウスに ⁴⁵Ca を腹腔内に注入し、1) 1 時間後、2) 3 時間後、3) 6 時間後、4) 24 時間後、5) 48 時間後に可及的迅速に、ドライアイスアセトン液に投与し、凍結固定を行なった。それを各々解剖し、1) 血液、2) 骨、3) 腸、4) 腎、5) 腸、6) 腎臓、7) 腎臓、8) 腎臓を結合して試料とした。なお血液は心臓より採血し、洗浄して採取した。また骨は大脳骨を、軟骨は耳軟骨を、筋肉は大腸筋を使用した。

第2項 ep 系マウス
ep 系マウスを次の3群にわけ、下記の操作を行なった。

第1実験群：実験開始24時間前におううへ伸加運動により典型的な産婦を起きたマウスに ⁴⁵Ca を腹腔内に注入し、24時間後にこれを処理し、各組織の ⁴⁵Ca を測定した。

第2実験群：第1群同様に産婦をもたらした ep 系マウスに ⁴⁵Ca を腹腔内に注入し、24時間後に産婦を起きさし、産婦直後に処理し、各組織の ⁴⁵Ca を測定した。

第3実験群：第1群、第2群同様に産婦をもたらした
ep系マウスに^{45}Caを腹腔内に注入し、1時間後に
観察を起させ、24時間後に処理し、各組織の^{45}Ca
を測定した。
以上の3群の凍結マウスを各々解剖して、1) 血
液、2) 骨、3) 脳、4) 筋肉をとり出して試料とし
た。

第3節 ^{45}Ca

第1項 使用アイトープ
Oak Ridge National Laboratory製のもので、Ca
Cl₂の塩酸溶液を使用した。そのspecifc activity
は111mCi/gであり、radiochemical purityは99％
以上である。実験にさいましてこの1mCiを蒸溜
水にて5mlとし、0.1ml完マウスの腹腔内に注入
した。なお0.1mlの溶液は assay dateにおいては
20μCに相当するが使用時においては、崩壊の法則
すなわち,

$I=I_0 \log e^{-\lambda t}$

ただしI放射能
λ放射性同位元素の崩壊常数
t時刻

に従って放射量を計算したが、通常は^{18}F程度の
ものである。

第2項 ^{45}Ca放射能の測定方法
各臓器を正確に100mgになるように秤量した後、
G-M計数管を用い金属製試料皿にのせ、灰化し、
神戸工業製Geiger-Müller counter(TypeGp-1型)
にて3分間の測定を行ない、Counts per minute
(cpm)を求めた。

第3章 実験成績

第1節 正常マウスにおける^{45}Ca代謝
まず正常マウスの^{45}Ca代謝を追求した。すな
わち、^{45}Caを腹腔内に注入して後、1時間、3時間、
6時間、24時間、48時間における1血液、2) 骨、
3) 脳、4) 軟骨、5) 骨肉、6) 脳、7) 肝臓、8)。
腎臓への移行を測定して、第1図より第8図のこ
t成績を求めた。

第1項 血液
血液中の^{45}Ca量の時間的推移を観察すると第1
図に示すごとくである。すなわち、平均値ののみに
注意すると1時間後4755cpm(6400～3628)3時間後
2780cpm(4696～1210)6時間後1353cpm(1871～
728)24時間後232cpm(408～123)であった。これにより血液中
の^{45}Ca量は注入口直後もつとも多く、漸次減少し
て24時間後には大体一定してくることがわかった。

第2項 骨
骨に沈着する^{45}Caは第2図に示すごとくで1時間
後、2時間後における6時間後は平均値が各々
8021cpm(9548～4172)8899cpm(10628～6742)
8231cpm(10300～6060)であり変化なく、24時間
後、48時間後は10753cpm(14550～7348)およ
び13962cpm(18223～8929)となり次第に増加して
いくことがわかった。

第3図 血液中^{45}Caの時間的推移

第3項 脳
^{45}Caの脳への移行は第3図に示すごとくで平均値
である。すなわち1時間後473cpm(614～405)3時間
後280cpm(511～195)6時間後237cpm(268～
146)24時間後148cpm(197～67)48時間後
75cpm(106～54)であった。すなわち、注射後1
時間が最高で、その後3乃至6時間で半減し、さら
に24、48時間と減少していくことがわかった。

第4項 軟骨
^{45}Caの軟骨への移行時間を時間的に推定してみると
第4図に示すごとくであり、平均値は1時間後
2563cpm(2948～2336)3時間後1201cpm(1655
～835)6時間後850cpm(959～688)24時間後

第2図 骨中 ^{45}Ca の時間的推移
筋肉における
45Ca
量を時間的に観察すれば第5図のごとくであり、3時間後には注文直後がもっとも多く3時間後は次々と減少し、その後も減少の傾斜をたどり24時間後には値がほぼ一定になることがわかった。

第6項 腎臓
第6図に示すごとく腎臓においても、45Ca
値は1時間後に最高値を示し、平均値は1820 cpm（2659～1314）であった。つまり、3時間後663 cpm（951～407）、6時間後353 cpm（496～285）、24時間後172 cpm（202～123）、48時間後85 cpm（109～61）となり次第に減少していことがあることがわかった。
第9図 各組織の時間的にみた45Caの移行

第10図 血液中45Caの移行

おおむね、骨における45Caの移行が時間的に進行するが、他の組織における移行速度は異なる。骨における45Caの移行は、時間とともに増加するが、他の組織における速度は時間とともに減少する傾向がある。

第2節 45Ca系マウスにおける45Ca代謝

第1節に述べたとおり、45Ca系マウスを用いての実験結果から、45Caを腹腔内に注入した後24時間目には、各組織ともっとも安定した45Ca濃度を示すことがわかったのでこれを指針として、45Ca系マウスについては、次の3群の実験を行った。

1) 第1実験群；45Ca系マウスに45Caを腹腔内に注入し、24時間後血液、骨、筋の45Ca濃度を測定した。

2) 第2実験群；45Ca系マウスに45Caを腹腔内に注入し、血液、骨、筋の45Ca濃度を測定した。

3) 第3実験群；45Ca系マウスに45Caを腹腔内に注入し、血液、骨、筋の45Ca濃度を測定した。

第1項 血液中45Ca含有量

第10図に示すところ、血液中45Ca濃度を平均値で示すと、第1実験群420 cpm（618〜307）、第2実験群419 cpm（519〜288）、第3実験群382 cpm（528〜281）であり、45Ca系マウスでは平均値322 cpm（408〜223）であった。すなわち、いずれの場合も正常マウスよりも多いが、第1、第2、第3群

第3項 脳への45Ca移行

脳への45Ca移行は第12図に示すとおり、平均値は第1実験群94 cpm（128〜78）、第2実験群109 cpm（131〜79）、第3実験群84 cpm（113〜70）、45Ca系マウス148 cpm（197〜67）であった。すなわち、45Ca系マウスでは脳への45Caの移行が正常マウスに比べて著明に減少していることが明らかになった。また座標の影響として座標の直後
第12図 筋中 ^{45}Ca の移行

第13図 腦中 ^{45}Ca の移行

第4章 総括ならびに考察

^{45}Ca を用いた Calcium 代謝の研究はすでに大森ら5）あるいは宮川ら6）によって報告されているが, ep 系マウスについての研究はみられない。ep 系マウスについての ^{45}Ca 代謝の研究を始めるにあたり, 対照マウスとして従来われわれが使用してきた CF-1 系マウスについても明かにする必要があるので, まず CF-1 系マウスを用いて, 腦腔内に注入された ^{45}Ca が時間の経過に従っていかに組織に移行するかを検査した結果, 筋では6 時間以後, 24 時間, 48 時間と時間の経過ともに ^{45}Ca 含有量が増加するが, 腦以外では一般的に24時間目には最低値に達し, 24時間後に安定していることを知りえたほか, その他, 個々の組織へのとり込みの様子も大森らの報告とは類似した成績がえられた。従って, ^{45}Ca を腹腔内に注入して後24時間目を目標にして, ep 系マウスでの ^{45}Ca の移行を正常マウスと比較するとともに, 燃焼によって個々の組織への ^{45}Ca の移行がどのように影響されるかを検討した。

その結果, ep 系マウスの血液中の ^{45}Ca は正常マウスより多いことを見出した。このさい ep 系マウスの血液中 Ca 濃度は第1編において明らかにしたとく, 正常マウスの濃度とはほとんど変わらないことから考えると, ep 系マウスでは血液中の Ca の交換が早く, Ca の代謝が正常マウスよりも活発に行なわれることを意味するものと考えられる。つぎに, 骨における ^{45}Ca の移行であるが, 体内の Ca はほとんど骨に存在し, 他の組織における Ca は全体の 1％にも満たないので, Ca の代謝において骨はもっと重要部位である。しかし, 第1編において化学的に定量した ep 系マウスの骨の Ca 含有量は正常マウスとの間に有意の差が認められなかったし, ^{45}Ca を用いた成績においても同様の間に ^{45}Ca 移行の相異を見出すことは困難であった。

つぎに骨への ^{45}Ca 移行であるが, ep 系マウスは正常マウスに比べて明らかに骨への ^{45}Ca 移行の抑制が認められた。一般に骨は blood-brain barrier5）の存在のため種々の物質の移行が抑制されていることとは周知の事実であるが, ^{45}Ca もその例外にあらず, 他の組織よりもはるかによくなっている。骨の Ca 含有量は第1編において明らかにしたとく, ep 系マウスと正常マウスとの間に有意の差が認められないが, ^{45}Ca の移行のみが抑制されているということは blood-brain barrier のために血管一組織間の交換が抑制されていることを示すものであるし, しかし燃焼によっては若干移行の増加が認められた。なお blood-brain barrier の問題に関しては第3編において検討することにする。

つぎに筋への ^{45}Ca 移行の問題であるが, ep 系マウスでは正常マウスに比べて筋への移行がやや少ないと報告されている。マウスは筋肉組織においても神経細胞と同様に興奮抑制的に作用しているが6）, 第1編において明らかにしたとく ep 系マウスでは筋 Ca
含有量がやや減少しており，筋における Ca 代謝の活性低下は被験者数の増加が示唆されるとともに ep 系マウスの尿中 Ca 排泄量の増加の原因とも考えられる。また障害による 46Ca 移行の増加は第 1 編に示したごとく障害後数時間は Ca の尿中排泄量が減少するという事実とも一致している点が注目される。

第 5 章 結論
まず予備実験として正常マウスの腹腔内に 46Ca を注入した後，血液，骨，脳，軟骨，筋，肝，腎への 46Ca 移行の増加を追求し 24 時間後には，それぞれの組織面ではほぼ安定した値となることを見出したので，ついて本実験として ep 系マウスに 46Ca を腹腔内に注入し，24 時間後における血液，骨，脳，筋への移行を正常マウスと比较するとともに，それらに及ぼす障害の影響を検討し，次の表に記載した成績をえた。

1) ep 系マウスの血中の 46Ca 含有量は正常マウスに比べて増加しているが，障害によっては影響されない。
2) ep 系マウスの骨への 46Ca 移行は，正常マウスと比較してほとんど有意差がない。また障害によっても影響を受けない。
3) ep 系マウスの脳への 46Ca 移行は，正常マウスに比べて著しく減少している。これは障害によりやや増加する傾向にある。
4) ep 系マウスの筋への 46Ca 移行は，正常マウスに比べて減少しており，またこれは障害により増加する傾向にある。

稿を終るにあたり御指導，御鞭撻下さり，御校閲を賜った恩師藤原教授ならびに田中教授に深い感謝の意を表するとともに，実験にあたり種々御助言をいただいた当教室の森博士に深謝する。

参考文献
2) 山村：新医化学（南山堂）1961。
5) 森田：神経研究の進歩，5, 768, 1961.
6) 浅川：条件反射，17, 51, 1961.
7) 小島：条件反射，20, 105, 1961.
Studies of the Calcium Metabolism in the ep-Mouse

Part 2 45Ca Metabolism in the ep-Mouse

By

Masayoshi KAKUDA

1st Department of Surgery, Okayama University Medical School

(Director: Prof. D. Jinnai M.D.)

Prof. S. Tanaka M.D.)

45Ca was injected into the abdominal cavity of normal mouse. Thereafter, 45Ca incorporated in the blood, bone, brain, cartilage, muscle, spleen, liver and kidney was investigated, and it was observed that the concentration of 45Ca incorporated in the various tissues was stablest 24 hours following the injection. Thus, investigations were carried out at this time to compare the concentration of 45Ca in the various tissues of the ep-mouse to that of the normal mouse and its relative effect on the character of the convulsion.

The results were as follows;

1) Blood 45Ca content of the ep-mouse was higher than that of normal mouse, and this was not affected by convulsions.

2) There was no significant difference between the ep-mouse and normal mouse in 45Ca content incorporated in the bone, nor any effect in the convulsive nature.

3) 45Ca concentration incorporated in the brain of ep-mouse was markedly lower than that of normal mouse, this concentration was slightly increased by convulsion.

4) 45Ca concentration incorporated in the muscle of ep-mouse was lower than that of normal mouse, and this concentration was slightly increased by convulsion.