ベクトル心電図に関する研究（Frank 法）

第 2 編
日本人老 壮 年 者 の T 環 つ い て

岡山大学医学部第一内科教室（主任：小坂淳夫教授）

副 手 今 井 正 信

(昭和42年9月22日受稿)

緒 言

心筋障害の診断にさいし、心電図上、T波の変化が一つの重要な所見であるが、これに対しベクトル
心電図（以下 "ベ図" と略記）におけるT環の変動は、その投影であるT波よりも、更に重要であるこ
とは既知のことである。特に、最近T環の変化に関
する研究は多くなり、その臨床的応用の範囲も益々
拡大されつつある。

最近、Chou（1）、Sano（2）、Toyama（3）、4）及び Sotoyama（5）等によりT環に関する研究がなされている。

即ち、ベ図におけるT環は、その大きさ、位置の
異常のほかに形状の変化、回転の方向を知ることよ
り、心電図で得られない情報を把握することが出来る。

また、"ベ図" の ST ベクトルは T 環のかけた部
分に相当するという考えによると、心電図の ST・T
変化はベ図の T 環の変化といえよう。

著者は第1編で、日本人正常青少年のT環の特異
性について述べたが、本編においては心電図上、異
常なしと判定された日本人老壮年者のベ図、とくに
T環について検討を加えた。

対象及び検査方法

対象は表1の如くで、心電図（V_3r, V_7r を含む14
誘導）上で異常なしと診断された40才以上の男子91
例、女子78例である。これらの対象に血圧、眼底所
見（Scheie の分類）、血清コレステロール等の検査を
行った。ベ図の誘導法は Frank 法を用いた。ベク
トル心電計は福田エレクトロ株式会社製 VA-3 型を
使用した。

"ベ図"の波形体位は仰臥位で呼気時撮影し、水平面の導入の接着部位は第5肋間とし、
ベクトル分析の方法は、図1に示すように、QRS
最大ベクトルの大きさ（QRS mag.）、空間 QRS-T
矢角、T環ではT最大ベクトルの大きさ（T-mag.）
、T mag./QRS mag. 及び、T環の長軸（L）と短軸
（W）の比（L/W）を求めた。L/W は前面図、
右側面図、水平面図、各面での最大長軸と最大短軸
の比をとった。)

<table>
<thead>
<tr>
<th>年令</th>
<th>性別</th>
<th>40-49才</th>
<th>50-59才</th>
<th>60-69才</th>
<th>70才以上</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>男</td>
<td>26</td>
<td>26</td>
<td>19</td>
<td>20</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>女</td>
<td>23</td>
<td>18</td>
<td>22</td>
<td>15</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>49</td>
<td>44</td>
<td>41</td>
<td>35</td>
<td>169</td>
<td></td>
</tr>
</tbody>
</table>

ORSMag : √x^2 + y^2 + z^2

T Mag : √x^2 + y^2 + z^2

ORS-T 矢角：Heim 分析法
Polar vector の大きさ、及び Polar vector の方向は Burger の方法に より図 2 に示す通り、角φ、角ψ で表現した。また水平面図における最大ベクトルが 2 つ以上存在する場合は half area vector に 近いものを採用した。

尚、その他の検査は、眼底動脈硬化所見は Scheie の分類 0 ～ I ～ II を正常群、Ⅱ ～ IV を異常群とし、血圧は最高血压150mm Hg 以下、最低血压90mm Hg 以下を正常群、その他を異常群とした。また、血清コレステロール値は 280mg/dl 以下を正常群、以上を異常群とした。

検査成績

1) 年令、性別とベクトル分析値

健常者年令のベクトル分析値と年令、性別の関係は、表 2、図 3 に示す加くであり、QRS 最大ベクトルの大きさは平均値であると男性 40才代 1.81、50才代 1.68、60才代 1.40、70才以上 1.42 mv と 高令者では小となり、同様に女子では 50才代 1.48、60才代 1.42、70才以上 0.84 mv と男子に比 較して小であった。T 最大ベクトルの大きさ は平均値をとるも男子では各年代により、0.47、 0.47、0.39、0.36 mv と年令と共に小となり、 女子では 0.32、0.32、0.31、0.27 mv と男子よ り小さい傾向にあった。Tmag. /QRS mag. は女 子が男子より小さく、年令の増加と共に小とな る傾向にあった。空間 QRS-T 外角は表 2、図 5 に示す加く、男女共年令の増加と共に大きく なる傾向にあった。

表 2 年令性別ベクトル分析値

<table>
<thead>
<tr>
<th>分析値</th>
<th>性別</th>
<th>40～49才</th>
<th>50～50才</th>
<th>60～69才</th>
<th>70才</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
</tr>
<tr>
<td>QRS Mag.</td>
<td>mv</td>
<td>1.81</td>
<td>1.36</td>
<td>1.68</td>
<td>1.48</td>
</tr>
<tr>
<td>T Mag.</td>
<td>mv</td>
<td>0.47</td>
<td>0.32</td>
<td>0.47</td>
<td>0.32</td>
</tr>
<tr>
<td>Tm./QRSm.</td>
<td></td>
<td>0.27</td>
<td>0.24</td>
<td>0.28</td>
<td>0.21</td>
</tr>
<tr>
<td>QRS-T</td>
<td>ang/°</td>
<td>28</td>
<td>28</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>L/W</td>
<td>F</td>
<td>5.6</td>
<td>5.2</td>
<td>5.6</td>
<td>4.4</td>
</tr>
<tr>
<td>L/W</td>
<td>S</td>
<td>4.4</td>
<td>4.7</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>L/W</td>
<td>H</td>
<td>2.5</td>
<td>2.9</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Max.</td>
<td>L/W</td>
<td>4.0</td>
<td>4.0</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>T</td>
<td>ψ°</td>
<td>51</td>
<td>44</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td>φ°</td>
<td>114</td>
<td>106</td>
<td>119</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>Polarveclor</td>
<td>mv²</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>
ベクトル心電図に関する研究（Frank 法）

図4 T Mag. と年令

図5 空間 QRS-T 夾角と年令

図6 L/W Max. と年令

図7 角 ψ と年令

図8 角 ψ と年令

図9 T-Polar vector の大きさと年令

T環の長軸と短軸の比については、表2，図6，
に示す如く、前面図、右側面図、水平面図の各面に
おける比は、高年令者程小なる傾向にあるが、最大
値の比 L/W でみると、その傾向はより明瞭であっ
た。

表2，図7，図8に示す如く、T環における Polar
vector の方向をしす角 ψ は年令の増加と共に、男子で
は51°，57°，61°，54°，とやや拡大の傾向あり、女
子でも44°，54°，54°，50°，と男子と同じ傾向がみ
られる。角 ψ は年令の増加と共に、男子では114°，
119°，103°，104°，と，女子でも106°，103°，106°，
81°，と共にやや縮小の傾向が観られた。

表2，図9に示す如く、T環の Polar
vector の大きさは男女共、高年令者程小とな
る。即ち男子は平均値で40才代0.06，50才代
0.06，60才代0.04，70才代0.03 mv²，
女子では 40 才代 0.05，50 才代 0.06，
60 才代 0.03，70 才以上 0.03 mv² であつ
た。

2) 年令、性別と QRS 及び T環の
Polar vector の占める象限

年令、性別と象限との関係は、表3にみ
る知く、QRS 環では高年令になるにした
832

今井正信

表3 象限別年令別性別

<table>
<thead>
<tr>
<th>年令</th>
<th>40~49才</th>
<th>50~59才</th>
<th>60~69才</th>
<th>70~89才</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂</td>
<td>♂</td>
<td>♂</td>
<td>♂</td>
<td>♂</td>
</tr>
<tr>
<td>♀</td>
<td>♀</td>
<td>♀</td>
<td>♀</td>
<td>♀</td>
</tr>
<tr>
<td>QRS</td>
<td>2 19 17</td>
<td>22 12 16</td>
<td>13 12</td>
<td>13 12</td>
</tr>
<tr>
<td>T</td>
<td>2 19 18</td>
<td>22 13 11</td>
<td>16 11</td>
<td>10 10</td>
</tr>
</tbody>
</table>

表4 血圧と分析値

<table>
<thead>
<tr>
<th>分析値</th>
<th>normal (64)</th>
<th>abnormal (26)</th>
<th>分析値</th>
<th>normal (41)</th>
<th>abnormal (29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRS Mag. mv</td>
<td>1.61 0.49</td>
<td>1.46 0.48</td>
<td>QRS Mag. mv</td>
<td>1.51 0.52</td>
<td>1.33 0.21</td>
</tr>
<tr>
<td>T Mag. mv</td>
<td>0.43 0.17</td>
<td>0.40 0.11</td>
<td>T Mag. mv</td>
<td>0.32 0.11</td>
<td>0.30 0.18</td>
</tr>
<tr>
<td>L/W Max.</td>
<td>3.64 1.39</td>
<td>3.36 1.27</td>
<td>L/W Max.</td>
<td>3.69 1.01</td>
<td>3.09 1.41</td>
</tr>
<tr>
<td>φ °</td>
<td>56.1 14.6</td>
<td>52.0 15.9</td>
<td>φ °</td>
<td>53.3 17.9</td>
<td>50.8 12.9</td>
</tr>
<tr>
<td>T/QRS</td>
<td>0.267</td>
<td>0.274</td>
<td>T/OBS</td>
<td>0.211</td>
<td>0.225</td>
</tr>
</tbody>
</table>

がい2象限に位置すものが少なくなる傾向にあった。T環も同様に高令者になるにしたがい2象限に位置するものが少なくなる傾向にあった。

3) 血圧値とベクトル分析値

血圧とベクトル分析値の関係は表4、図10、図11、図12に示す加くである。即ち、QRS環最大ベクトルの大きさは男性で血圧正常群、1.61±0.49mv、血圧異常群で1.46±0.48、女性では血圧正常群、1.51±0.52、異常群、1.33±0.21と異常群は正常群に比較して小となる傾向にあった。また、T環最大ベクトルは男性で血圧正常群0.48±0.17 mv、血圧異常群0.40±0.11 女子では血圧正常群0.32±0.11 mv、血圧異常群で0.30±0.18 と男女共血圧異常群は正常群に比較して小なる傾向にあるが、T mag. / QRS mag. は血圧正常群は、男性0.267、女子 0.211、血圧異常群は、男性0.274、女子では0.225 であり正常群と異常群で有意の差は認めなかった。T環 Polar vector の大きさは、図13に示す加く血圧正常群と血圧異常群では、あまり差を認めなかった。L/W値は最大値の比で、男性、血圧正常群で3.64±1.39、血圧異常群では3.36±1.37、女子では血圧正常群3.69±1.01、血圧異常群で3.09
±1.41と男女共、血圧異常群は血圧正常群に比較して小なる傾向にあった。

T環におけるPolar vectorの方向を示す角ψは男子血圧正常群56°±14°、血圧異常群で52°±15°、女子では血圧正常群で53°±17°、血圧異常群50°±12°で男女共やや縮少の傾向にあった。角ψは男子で血圧正常群、133.2°±15.3°、血圧異常群で110.3°±11.7°、女子では血圧正常群、104.7°±13.6°、血圧異常群98.5°±10.6°と男女共縮少の傾向にあった。

また、空間QRS-T夹角は血圧異常群が正常群に比較して40°以上の者が多くなる傾向を認めた。

4) 眼底動脈硬化所見とベクトル分析値
眼底動脈硬化所見と分析値の関係は、表5、図13、図14、図15に示す如く、QRS環最大ベクトルの大きさは、男子眼底所見正常群、1.69±0.49、眼底所見異常群、1.42±0.45mv、女子では眼底所見正常群、1.41±0.53、眼底所見異常群、1.33±0.47 mvで男女共眼底動脈硬化所見異常群は正常群に比較して小なる傾向にあった。また、T環最大ベクトルの大きさは男子眼底所見正常群、0.44±0.15、眼底所見異常群、0.38±0.12、女子では眼底所見正常群、0.32±0.13、眼底所見異常群、0.30±0.12 mvで男女共眼底所見異常群が小なる傾向にあったが、
表5 眼底所見と分析値

<table>
<thead>
<tr>
<th></th>
<th>normal (54)</th>
<th>abnormal (36)</th>
<th></th>
<th>normal (46)</th>
<th>abnormal (30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変数</td>
<td>平均</td>
<td>σ</td>
<td>平均</td>
<td>σ</td>
<td>平均</td>
</tr>
<tr>
<td>QRS Mag.</td>
<td>1.69</td>
<td>0.49</td>
<td>1.42</td>
<td>0.45</td>
<td>1.41</td>
</tr>
<tr>
<td>T Mag.</td>
<td>0.40</td>
<td>0.15</td>
<td>0.38</td>
<td>0.12</td>
<td>0.32</td>
</tr>
<tr>
<td>L/W Max.</td>
<td>3.63</td>
<td>1.24</td>
<td>3.49</td>
<td>1.34</td>
<td>3.69</td>
</tr>
<tr>
<td>ψ°</td>
<td>54.8</td>
<td>16.5</td>
<td>54.7</td>
<td>12.5</td>
<td>52.9</td>
</tr>
<tr>
<td>φ°</td>
<td>109.3</td>
<td>14.0</td>
<td>105.8</td>
<td>22.8</td>
<td>104.3</td>
</tr>
</tbody>
</table>

T/QRS | 0.260 | 0.267 | T/QRS | 0.227 | 0.225

図14 眼底所見と分析値(2)

T mag./QRS mag. 比では眼底所見正常群で男子0.260、女子で0.227、眼底所見異常群では男子、0.267、女子0.225と正常群と異常群では、ほとんど変化を認めなかった。

T 矢 Polar vector の大きさは 0.03mv² より小さいものが男子では眼底所見正常群、39%、眼底所見異常群54%、女子では眼底所見正常群78%、眼

底所見異常群、83%と男女共眼底所見異常群で0.03
mv²以下のものが多くT矢は小となっている。

L/W 比は最大値で男女眼底所見正常群、3.63±1.24、眼底所見異常群で3.49±1.94、女子で眼底所見正常群、3.69±2.07、眼底所見異常群、3.00±
ベクトル心電図に関する研究（Frank 法）

835

表6 Cholestrolと分析値

<table>
<thead>
<tr>
<th>分析値</th>
<th>normal (79)</th>
<th>abnormal (11)</th>
<th>異常</th>
<th>異常</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRS Mag.</td>
<td>1.53</td>
<td>0.18</td>
<td>1.85</td>
<td>0.68</td>
</tr>
<tr>
<td>T Mag.</td>
<td>0.44</td>
<td>0.17</td>
<td>0.44</td>
<td>0.15</td>
</tr>
<tr>
<td>L/W Max.</td>
<td>4.06</td>
<td>1.46</td>
<td>3.19</td>
<td>1.36</td>
</tr>
<tr>
<td>φ</td>
<td>56.1</td>
<td>14.9</td>
<td>41.9</td>
<td>15.0</td>
</tr>
<tr>
<td>ψ</td>
<td>129.6</td>
<td>10.7</td>
<td>110.9</td>
<td>9.3</td>
</tr>
</tbody>
</table>

T/QRS | 0.287 | 0.237 | 0.229 | 0.238 |

図16 Cholestrolと分析値[1]

図17 Cholesterolと分析値[2]

1.45と男女共異常群が小となる。このことよりT現は異常所見正常群に比較して異常所見異常群が丸くなる傾向にあると言える。

T現 Polar vector の方向は角φは著明な変動なく傾度、異常所見異常群が小なる傾向にあった。また、角θはあまり変動を認めなかった。空間QRS-T 夾角は41°以上のものが異常所見異常に、男性、33%、女性28%とやや多くなる傾向を認められた。

5）血清コレステロール値とベクトル分析値

表6、図16、図17、図18に示す如く、QRS 現最大ベクトルの大きさは男性血清コレステロール（以
下 “血清コ”と略）正常群、1.53±0.18、“血清コ”異常群、1.85±0.68、女子では “血清コ”正常群、1.31±0.48、“血清コ”異常群で 1.51±0.50mv と “血清コ”異常群がやや大であった。また、T環最大ベクトルの大きさは、男子 “血清コ”正常群、0.44±0.17、“血清コ”異常群、0.44±0.15 とすほ変化なく、女子 “血清コ”正常群、0.30±0.11、“血清コ”異常群、0.36±0.11mv と大なる傾向にあつたが、Tmag/QRSmag. 比では男子 “血清コ”正常群、0.287で “血清コ”異常群、0.237と “血清コ”異常群では、むしろ、小となっている、女子 “血清コ”正常群で0.229、“血清コ”異常群、0.238 とあまり变化を認めない。

最大値 L/W は、男子 “血清コ”正常群、4.06±1.46、“血清コ”異常群、3.19±1.36 と “血清コ”異常群で小であるが、女子 “血清コ”正常群、3.30±1.73、“血清コ”異常群、3.25±2.27 とほとんど変化をみない、また、水平面図 L/W では “血清コ”異常群は “血清コ”正常群に比較して小なる傾向を認めた。

T環 Polar vector の方向は、角度で男子 “血清コ”正常群、56.1°±14.9、“血清コ”異常群で 41.9°±15.0と “血清コ”異常群が小さく、女子では “血清コ”正常群、52.1°±13.9、“血清コ”異常群、51.2°±15.6 とあまり差は認めなかった。角度は男子 “血清コ”正常群、129.6°±10.7、“血清コ”異常群、110.9±9.2 とやや縮小する傾向を認めた、T環

Polar vector の大きさは 0.031mv² より大きいものが、男子 “血清コ”正常群で 63名、“血清コ”異常群が72名とやや増加し、女子 “血清コ”正常群で 20名、“血清コ”異常群、27名と軽度の増加を認めた。

空間QRS-T夹角は、“血清コ”正常群と “血清コ”異常群であまり変化を認めなかった。

総括と考察
心筋障害の診断にさいし、心電図上の T波の変化は重要な所見であるが、“ペ図”の T環は ST-Tを含めて考えうる点より、心電図で明らかでない変化を“ペ図” T環の形態、位置の変化により判断し得るとする研究がなされている。10）しかし、T環については小さく、非特異的变化しかないと考えられていたためもあって QRS 環についての研究に比し、その研究は少ない、特にその形態、構成についてのものは少ないようである。Massie11は QRS-Tの長軸間の夹角が45度以上であることが心電図の非特異的 T異常に相当する所見であると述べ、Karni12は QRS 環の伝導優延を呈した時、それを窓ブロックでない心室伝導障害の歯と述べている。また Karni12は高コレステロール血症で T環が丸くなると主張している。その後、San6等はこれを電図検診で検討し、T環の丸いものは高コレステロール血症に多いことを認めており、最近では T環の構成について T. C. Chou1、Toyama15の研究がある。Chou1は Karni12と異なった考え方で丸い T環の分析を行っているし、Toyama7は T環の3つの時間における Direction cosin を求め、それより各期、Y.Z 軸の T環ベクトルを算出している。また、T環の年令的変化について Augustin14、Wajszczuck and Burch15等の報告をみる。著者は T環について Burger9の Polar vector の方向、及び、大きさを測定し、同時に長軸と短軸の比と年令、性別との関係を検討した。

T環は、年令の増加と共に男女共、小さく丸くなりやや前下方に移動する。空間 QRS-T 夹角は年令の増加と共に大となり、QRS 環最大ベクトルは小となり、また、T環最大ベクトルも小なる傾向にあった、Tmag/QRSmag. 比でも前記の加く年令の増加と共に小なる傾向を示している。これらは Wajszczuck15及び原周、根本等の研究8とよく一致する。

この年令的変化は第一編で述べた青少年の正常 T環と異なり、Polar vector の大きさも小さく、L/W
も小なるものであり、特に老者 (60才代～70才代) で水平面図 T 群は丸く小さなものが多かった。この場合 L/W が小さくなったものでは、かなり変形した T 群を認めたことは Toyama10 の研究とよく一致し興味ある点である。この T 群の変動は年令的に言って40才代最も大きくて丸いものが多いようであるが、これは老者において動脈硬化が進行して冠硬変を来す場合は、むしろ、T 群は小さく丸くなったり、変形して小さくなるとの所見に比較して興味がある。更に、老者では前方図、側面図で小さく変形した T 群を見たが、これらはかなり広範囲の冠硬変を有するためと考えられる。

Karni(13) 及び Sano(7) 等は T 群が丸くなった場合は Karni は高コレステロール血症を有いて、Sano は集積をこれをたしかめているが、著者の場合は血液コレステロール値、眼底所見にはあまり関係をみとめず、むしろ、年令的なもののが関係していた。血圧の場合は有意の差はみつめかなかったが、径度大きくなる傾向にあった。

T 群が丸くなる場合は他に冠状動脈疾患、高度性動脈管硬化、リウマチ性心疾患等にみられると言った報告がかなりある(14)(12131719)

また、年令的にも(1415) 先天性疾患(222) にも T 群は丸くなると言う。

T 群は丸くなる場合の説明としては、Karni(17) は、心筋障害と再検の均衡の乱れとをし、T. C. Chou(1) は構成ベクトルの合成の結果と推定している。そのうちでも、戸山等(4) は心室内外の興奮伝播過程 (再検過程) が充分説明されない T 群の成因をのべることは困難とは言っているが、T 群分析法(3) を考慮している、これは水平面図における T 群を 3 つの時期、前、中、後期に分け、中間ベクトルを 3 つの方向のベクトル、前側、左室側、右室ベクトルに分け高血圧の際の移動、脚ブロック時の変化、粗纖の T 群の形状を説明しようと試み、又、心室をいくつかの部分にわけ、各部の興奮電位の開始、及び、そのピークを臨床的ずつを推定し、前壁を後側壁より少し早く、心室の収縮に伴い各部分のベクトルの方向が変るようにし、T 群の 3 つの時期における Direction cosin を求め正常 T 群を構築している(7)。この分析法から著者の成績を考えると、40～50才代で丸く T 群は、T 群後半部で後側壁の影響がかなりあつたと考えられ、60～70才代で小さく丸くなるのは左室側壁、後壁の心筋障害（主に冠硬変）によるものと考えられる。特に、70才以上で変形した T 群を認めた点も説明出来得る。

しかし、戸山等の報告(12) のうち、潜在性冠不全時の形態的変化を(7) にみられる W/L が50～31% の例は著者の言う40才代での T 群の変化と類似している。このような検査法であるが、大きく丸を 40 に T 群は60～70才代ではほとんど存在せず40～50才代に認めるものである。特に潜在性冠不全に特有なものとは考えられない。むしろ、この場合は上に述べた知く、年令的に40～50才代に多く見られる T 群との鑑別が大切となる。しかし、潜在性冠不全における検査の T 群はやや大きいか、何らかの変形を伴つた検査であり、40～50才代の正常 T 群は変形を伴わないと言えるかも知れない。また40～50才代の検査の T 群が冠不全を伴つたものか否かは診断出来ないとしても、戸山等が言うように潜在性冠不全に丸い大きな T 群の存在があったかを考えて、著者の例のうち、40～50才代の正常 T 群の中に検査法は呈するものの後側壁に冠不全があり、再検に影響しているとも考えられる。

結語

心電図十四誘導にて異常なしと認めた男性 91例、女子 78例における "ベクトル T 群と血圧、血清コレステロール、眼底所見（特に、動脈硬化性変化）及び、年令、性別との関係を検討し、次のことを認めた。

1) 男女共に年令の増加と共に T 群は小さく、丸くなり、上方に移動する傾向にあった。

2) 象限は T 群において年令の増加と共に 2 象限が少なくなり、1 象限が増加する傾向にあった。

3) 血圧、血清コレステロール値、眼底所見の変動と T 群形態は相関をあまり認めず、年令的な変動が著明であった。特に、40才代では、丸く丸を 40 に T 群を認めた。

(原稿講師の御指導、御校閏を深謝する。)

本論文の要旨は第23回日本循環器学会総会、及び、
第11、12回日本循環器学会中国四国地方会総会で発表した。
Studies on Vectorcardiogram

Part II Analysis of the T loop in the Aged

By

Masanobu IMAI

The First Department of Internal Medicine Okayama University Medical School
(Director: Prof. Kiyowa Kosaka)

Subjects with normal standard 14 leads EOG were chosen. Relationship of the T loop with blood pressure, serum cholesterol, funduscopic findings, (especially arteriosclerotic changes)
Age and sex distinction was studied. Results were as follows.

1) The T loop tended to be small, and circular, and to be located superiorly with the aging in both sex.

2) Location of the polar vector of the T loop tended to convert into the first quadrant from the second one.

3) The shape of the T loop was not correlated with blood pressure, serum cholesterol and fundoscopic findings and it was more related to the aging.

The T loop was large and circular in the forth decade.