氏 麗華

授与した学位 士

専攻分野の名称 学 術 学 位 授 与 番 号 博甲第 4 0 0 4 号

学位授与の日付 平成21年 9月30日

自然科学研究科 産業創成工学専攻

(学位規則第5条第1項該当)

学位論文の題目 Support vector machine based mobile robot motion control and obstacle avoidance

(サポートベクターマシンによる移動ロボットの運動制御と障害物回避)

明聡 論 文審 査委員 准教授 教授 五福 明夫 教授 小西 正躬

学位論文内容の要旨

This dissertation discusses the problem of motion control and obstacle avoidance of a two wheeled mobile robot (TWMR) operating in a two-dimensional surface with obstacles, where noise effect is also considered. The noise effect is defined as uncertainty in the measured data. Support vector machine (SVM) and least squares support vector machine (LS-SVM) based control schemes of a TWMR are proposed in a static environment as well as in a dynamic environment respectively. The static environment is with unmoved obstacles and unmoved target, the dynamic environment is with moving obstacles and moving target.

Two wheeled mobile robots have been used extensively in many fields, such as transportation, assembly etc. In general, path planning and controller design of the mobile robot have to be considered. For the mobile robot path planning, the artificial potential field methodology is a popular tool because of its ability to find an optimal solution for mobile robot path planning and navigation. The most common application of the artificial potential field is path planning of the mobile robot. Although the potential field method is efficient for motion control of the mobile robot, but it suffers from local minima problem in the presence of obstacles. The mobile robot may be trapped in the local minima and can not attain the goal. That is, the needs for obstacle avoidance arise because of the local minima. Therefore, the issue of obstacle avoidance in various environments is important.

In this dissertation, considering the noise effect during the navigation of the TMWR, SVM and LS-SVM based control schemes are discussed under the measured information with uncertainty, and in the different given environments. One of them focuses on using a potential function and constructing a plane surface for avoiding the local minima in the static environment, where the controller is based on Lyapunov function candidate. Another one addresses to use a potential function and to define a new detouring virtual force for escaping from the local minima in the dynamic environment. With the proposed schemes, the local minima problem is proved to be solved. Stability of the control system can be guaranteed. However, during the navigation of the TMWR, the noise effect arises because of the uncertainty in the measured data. Namely, the motion control would be affected by the noise effect. The SVM and LS-SVM method for function estimation are used for reducing of the noise effect from the measured information. The parameter in the proposed controllers can be estimated by using SVM method and LS-SVM method. With the estimated parameter, the noise effect during the navigation of the TMWR is reduced. As a result, the motion of the mobile robot can be controlled accurately and smoothly. The proposed control schemes are evaluated by demonstrating numerical simulation results.

論文審査結果の要旨

本論文では、移動ロボットのナビゲーション中にノイズの影響を受けると仮定し、観測情報と 異なる不確実性がある環境下において、SVM と LS-SVM による制御手法を新しく提案している. すなわち、フィードバック制御とポテンシャル法による障害物回避という手法を用い、 SVM(Support Vector Machine)と LS-SVM(Least Squares Support Vector Machine)の回帰手法である関 数推定 (function estimation)によって観測誤差またはノイズの影響を低減し,移動ロボットを障害 物が存在する環境下で目標位置に到達させるための制御手法を提案している.一般に,ポテンシ ャル法を用いた経路計画では目標点からは引力、障害物からは斥力を受ける。その際、静的な障 害物/目標位置と動的な障害物/目標位置のそれぞれに対して、2種類のポテンシャルを構築する が,障害物情報を考慮した場合,停留点が発生し,目標位置に到達しない.そこで停留点を回避 する方法として、静的な環境では停留点から一定の領域を指定し、その領域においてリヤプノフ 関数を一定の勾配を持つ平面の関数で代用することで停留点を消去する手法を求めている.また, 動的環境においてはポテンシャルカ中で,引力と斥力だけでなく,迂回力を新たに導入し,停留 点を迂回することを考案している. さらに, ロボットの位置情報にはカメラのノイズなどによる 測定誤差が含まれる場合を考察している. すなわち, 本論文では, SVM と LS-SVM によって制御 器のパラメータ(ロボットの位置と向き)を推定し、観測誤差やノイズの影響を低減している。 また,各制御器のパラメータは,SVMとLS-SVMの推定モデルによって与えている.これによっ て,スムーズに移動ロボットの動きが制御可能となった.また,静的および動的環境下で LS-SVM による移動ロボットの運動制御と SVM による手法とを比較し,数値シミュレーションによって 提案法の有効性を示している.よって、本論文は、制御理論上の新たな知見を与え、さらに、実 用上の有効性も示しており、学術的意義は極めて高く、本研究は博士(学術)の学位に十分値す ると認められる.