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Surface Properties of Classical One-Component Plasma
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(Received September 17, 1986)

SYNOPSIS

Surface properties of classical one-component

plasma are investigated by numerical experiments on the

system with periodicity in two directions perpendicular

to the planar surface. The density profile, the

electrostatic potential, the electric field, and the

surface energy are obtained for intermediate values of

the coupling parameter of bulk part r and compared

with earlier experiments on spherical system. For r
=10, the surface energy is almost the same as earlier

result. For r =1, however, the surface energy is

reduced about a factor of 2. The consistency of

experimental values of the potential with the exact

relation is checked and necessity of large system size

is pointed out.

1. INTRODUCTION

The surface properties of the one-component plasma (OCP) have

been studied as a model of the surface of the liquid metals or the

interface of the electrode and the electrolyte solutions. Results of

theoretical investigations based on integral equations or the density

functional method have been compared with those of numerical

experiments.

In these investigations, some exact relationships between

physical quantities have been found and are used to confirm the

validity of theoretical results. The results of numerical experiments
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have also provided useful informations.

In numerical experiments by Badiali et al.(1) and by Levesque et

al.(2), spherically symme~ric systems with a few hundred particles

have been used to simulate the planar surface of OCP; the background

charge is uniformly distributed in a sphere and a hard wall is placed

to prevent the particles from evapolating to infinity. The results

seem to indicate that we can use systems with a few hundred ions to

obtain surface properties.

Rosinberg et al.(3) have made theoretical analyses and found

discrepancies between the results of density-functional method and

numerical experiment for small values of the coupling parameter and it

is argued by Hasegawa et al.(4) that the discrepancies are not due to

approximate nature of the density-functional method but due to the

finiteness of the system used in numerical experiments.

The purpose of this paper is to present the results of numerical

experiments for plane geometry and compare them with those for

spherical geometry.

2. INTERACTION ENERGY

In order to investigate the properties of the planar surface of

the one-component plasma, we consider a system of charged particles of

charge e and the background of opposite charges where the latter has a

constant charge density -enb but occupies only the domain /zl<Lz /2.

Thus the background has two surfaces Izl=Lz/2 which are perpendicular

to the z-axis. We place no hard walls which prevent particles from

escaping to Izl=~ In directions parallel to the surface, our system

is translationally invariant.

To simulate infinite extensions in x- and y-directions, we impose

the periodic boundary conditions along these directions and denote

the period by L. Our u~it cell therefore is the domain bounded by

four planes Ixl=L/2 and IYI=L/2 and includes N ions. The condition

of overall charge neutrality N=nbL2Lz is satisfied in our unit cell.

The interaction energy per unit cell U is given by

U=(1/2) I:
i~j

s + 1 + z z[v (r .. )+v (r .. )+vl(z .. )] + N I: v
2

(Z;)
~J ~J ~J . i •

(1)
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v S (;)=e 2
L erfC[~J(R-p}2+z2]/hR-P)2+z2, (2)
+p

l + 2 .+ +
V (r)=w(e /L) L exp(1K·R} [exp(Klzl)erfc(K/2G+Glzl)

+
K#O

+exp(-Klzl)erfc(K/2G-Glzl)]/KL, (3)

and

-I z I/L])

V~(Z)=2W(e2LZ/L2)[(Z2/Lz2+1/4)e(Lz/2-lzl)

+ ( Iz I/L ) e ( Iz I-L /2)].z z,

(4 )

(S)

erfc (x) =2w -1/2 (X>dtexp (_t2 ). (6)
x

In these expressions, ~ denotes the x-and y-components of 1 and t and
~

K are the lattice and reciprocal lattice vectors corresponding to the

two-dimensional periodicity of our system in x- and y-directions, and

e(x) is the unit step function. The constant UM is the Madelung enegy

of the square lattice of charges interacting via the Coulomb potential

e 2/r in the uniform neutralizing background(S);

(7)

To obtain (1) let us first assume our system to be periodic also

in the z-direction with period L'z and finally take the limit L'z
~

+~. The electrostatic potential ~(R,z) is given by

(8)

+ +
\olhere P(k) is the Fourier component of the charge density P (R, z) (P
~ ~ ...

(k=O)=O) for k=(K, k z ), the reciprocal lattice vector with k z =(2tr

/L'z}n z , nz=O, ±1, ±2, To obtain the interaction energy per unit

cell, we subtract the self-interaction energy from the integral over

the unit cell



(9)

(41T/k 2) Ip(K=O, k ) 1
2 + (N/2)UM.(lO)z z
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2 I -.. 1 2E (41T/k z ) P (K=O,k z ) .
k z

Here the summation with respect to k z is performed for those terms...
with K"O in the limit L'z-"a:>. Separating the Madelung energy (7),

the interaction energy per unit cell U is thus given as

2 -1 2 -.. -..
U=(2L) E E (21Te /K)exp(-iK·R .. -KI z. ·1)

Vj K;o!O ~J ~J

+(2L2L' )-lE
z k

z
The first term on the right hand side given as a series in the Fourier

space can be transformed into a sum of rapidly converging series in

both the real and the Fourier spaces. For this purpose we note the

identities
-1/2 a:> 2 2 2 2

exp(-Klz!)/K=1T f dtexp(-K t /4-z /t ),

°
(11)

-..
p

and obtain,

(12)

by dividing the integral into (0 ,G- 1 ) and (G- 1 , 00 ),

L-2 E (21Te2/K)exp(iK'R-Klzl)

K;o!O

=1T(e2/L) E [exp(Klzl)erfc(K/2G+Glzl)+exp(-Klzl)erfc(K/2G-Glzl)]/KL

K;o!O

+e 2 E erfc[G/(R-P)2+z 2 lI/(R_P)2+z 2
-..
p

-21Tl/2(e2/L)exp(_G2L2)/GL + 21T(e 2/L) ([zl/L)erfc(Glzl). (13)

-.. -..
Denoting the one-dimensional charge distribution f fdR P (R, z) by

p(z)and taking the limit L'z-"a:>, we rewrite the second term on the

right hand side of (10) as

. 2 2 2·
-(rr/L )ffdzdz'p(z)p(z') Iz-z'l=rr(e L /L ){- E Iz .. I/L

z ij ~J z

+2NE[(Z.2/L 2+1 / 4 )8(L /2-lzl)+(lz.I/L )8(lzl-L /2)] - N2/3}.
i ~ z z ~ z z

(14)
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From Eqs.(10), (13), and (14), we have finally (1).

3. RESULTS

We define the bulk coupling parameter r by

is the temperature, k B the Boltzmann constant, and a=(3/4~

The numerical experiments are performed for r=l, 2, 5, and

the standard Monte Carlo method due to Metropolis et al.(6)

where T

nb) 1/3.

10 by

We assume Lz=L; the background occupies a cubic domain in our unit

cell. The number of independent particles and the number of steps are

summarized in Table 1. Our system has smaller value for the ratio of

the surface area to the volume than spherical case. We therefore use

216 particles for the cases of r =2, 5, and 10 where the surface

transition layer is relatively thin, and 512 particles for r=l where

the layer has the thickness of more than (5-6)a. The initial steps of

about half of those listed are discarded.

The density p~ofiles are shown in Fig.l and listed in Table 2. In

figures and tables, the zero of the z-axis is taken at the surfaces of

the background and the positive z-axis is in the direction outward

from the surface. The center of the background is at z=-4.836a for

N=216 and at z=-6.448a for N=512.

For r=2, we observe the oscillation of the density profile.

The amplitude of oscillation increases with the increase of r and, at

the same time, the thickness of the transition layer outside the

surface of the background becomes small.

Compared with the result for spherical geometry with r=l (Badiali

et al.(l), Levesque et al.(2), the density has larger value for the

same value of z. This result is consistent with the prediction of the

density-functional analyses(3),(4). For r=10, the amplitude of the

oscillation of the density profile is smaller than the spherical case.

This tendency also seems to agree with density-functional analyses but

the reliability of the square gradient expansion employed in the

latter needs another confirmation.

The surface energy is obtained by subtracting the internal energy

of the bulk OCP occupying the volume of the background from the

experimental values of total internal energy. The results for the
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Table 1. Experimental parameters

r N Number of steps

1 512 3'10 5

2 216 3'105

5 216 3'105

10 216 3-10 5

1.0
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Fig." Density profile p(z) for f=l(a), 2(b), 5(c), and 10(d).

Present results (x), those by Badiali et al.(1) (0), and

those by Levesque et al.(2) (+) are plotted.
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Table 2. D~nsity profile

z/a p(z) z/a p (z) p (z) p (z)

r =1 r =2 r =5 r =1 0

-6.19 1 .005 -4.45 0.994 1.005 1.005

-5.67 0.998 -3.68 0.992 0.979 0.980

-5.16 1 .001 -2.90 0.992 1.008 1 .001

-4.64 1.000 -2.32 0.966 0.962 1.022

-4.13 0.995 -1.93 1.006 1.004 1.006

-3.61 0.996 -1.55 1.048 0.995 0.910

-3.10 0.999 -1 .16 0.950 1.034 1.002

-2.58 0.993 -0.77 0.868 1.099 1 .301

-2.06 0.988 -0.39 0.660 0.836 1.022

-1.55 0.942 0.00 0.340 0.305 0.214

-1.03 0.843 0.39 0.167 0.085 0.029

-0.52 0.638 0.77 0.110 0.039 0.013

0.00 0.370 1. 16 0.073 0.025 0.006

0.52 0.190 1.55 0.055 0.024 0.002

1.03 0.110 1. 93 0.038 0.020 0.001

1.55 0.071 2.32 0.029 0.015

2.06 0.057 2.71 0.024 0.012

2.58 0.045 3.10 0.017 0.009

3.10 0.036 3.48 0.011 0.007

3.61 0.029 3.87 0.009 0.003

4.13 0.026 4.26 0.011 0.002

4.64 0.021 4.64 0.013 0.002

5.16 0.018

5.67 0.016

6.19 0.016

6.71 0.014

7.22 0.015

7.74 0.011

8.25 0.011
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surface energy are shown in Fig.2 and Table 3. Compared with the

results of earlier experiments(1), the surface energy for r=1 is much

reduced but the value for r =10 is in good agreement.

The electrostatic potential V and electric field E (which has

only the z-component) are plotted in Fig.3 and Fig.4: We take the

bulk potential to be zero. The result for the potential is summarized

in Table 4.
There is an exact relation(7),(8) between the potential and the

bulk pressure P of OCP: In our case, we have

(16)

Known values of the right hand side of the above relation(9) are also

listed in Table 4 and are shown also in Fig.3.

In the case of f=1 with N=512, the relation (16) is satisfied

with sufficient accuracy. In other cases, however, the agreement is

not satisfactory: The experimental values of the potential difference

is always larger than expected from the exact relation. At the same

time, the potential has positive second derivative and is not

sufficiently flat in the central domain, except for the case of N=512.

This means that the average charge density is slightly negative in the

central part.

In Fig.1, the density profile seems to have achieved the

asymptotic behavior in the central region. This fact, however, does

not guarantee that the potential, which is the first moment of the

charge density, also satisfies the asymptoptic property. As a result,

the electrostatic potential near the surface deviates from the correct

value predicted by the exact relation.

The effect of this deviation on the surface energy may be

estimated as follows. For a particle in the surface region, the

microscopic potential energy is composed of the average part

corresponding to the average density profile and the fluctuating part

due to correlations. The surface energy is the difference of this

potential energy and the bulk correlation energy per particle, summed

over particles in the column perpendicular to the surface with the

base of unit area and mulplied by 1/2 to adjust double counting.

Relative importance of the error in the average potential, 6V,may

then be estimated by evaluating the correlational part of the energy

by the bulk OCP value with the desity at the surface as
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Table 3. Surface energy

r
Us/anbkBT

present result Badiali et al.

1 0.69±.0.04 1.309

2 0. 78.±.0. 07

5 0.71.±.0.04

1O 0.47+0.03 0.481

2

Us
anbkST

X

1

t ~
<>

~ ~
0

i X

Fig.2. Surface energy density Us normalized by anbkBT: Present

results (.) and those by Badiali et al.(1) (X) are compared

with values obtained by the density-functional method

(Rosinberg et al.(3) (0) and Hasegawa et al.(4) (0)).
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Table 4. Electrostatic potantial

r eV( 0) /kBT P/nBkBT eV(oo)/kBT

1 0.801 0.809 4.1

2 1.040 0.560 6.7

5 0.679 -0.252 5.2

10 -0.520 -1.666 -0.08

4

2

o

(a)

-2

4

2

o

(b) ( d )

-2
-5 o 5

z/a
-5 o 5

Fig.3. Electrostatic potential VIz) normalized as eV/kBT for

f=1 (a),2(b), SIc), and 10(d) compared with the value required

by exact relation (x).
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Fig.4. Electric field E normalized by (nbkBT)1/2 for r=l(a), 2(b),

S(d, and 10(d).
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( 1 / 2 ) e~V / [e c ( r' )+ ( 1 / 2 ) e V ( 0 ) - e c (r )]. (17)

Here e c is the bulk correlation energy per particle and f'= (p

(O)/nb) 1 /3r . For r =1, 2, 5, and 10, the above expression is evaluated

as -0.01, +0.25, +0.28 and +0.18.

We now compare our results for the surface energy with those of

the density-functional calculations which are also shown in Fig.2.

For r=1 and 10, the surface energy is in agreement with but slightly

smaller than calculated. When the effect of ~V mentio~ed above is

taken into account, values for r=2 and 5 are also roughly in

agreement with calculations.

The consistency between the values of the potential obtained as a

direct result of experiment and the exact relation has not been

checked in earlier experiments. The above results indicate that this

relation works as a useful guide to judge the reliability of

experimental results.

4. CONCLUSION

We have made numerical experiments on the planar surface of the

one-component plasma and checked the consistency of the results with

the known exact relation between the potential and the bulk pressure.

Conclusions may be as follows. (i) The surface energy of the planar

surface for r =1 is about a half of that of spherical surface but the

one for r=10 is almost the same. (ii) Our results are in rough

agreement with the prediction of the density-functional theory but are

slightly smaller for f=1 and 10. (iii) The behavior of the potential

near the surface should be consistent with the exact relation in order

to obtain reliable values for the surface energy, and observation of

the behavior of the density profile is not sufficient enough for the

central part to have bulk properties. In order to obtain more

reliable values for f=2 and 5, experiments with increased system size

may be necessary.
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