Preparation and Dielectric Properties of [Ba, Ca] TiO$_3$-Al$_2$O$_3$-SiO$_2$ Glass-Ceramics

Kiichi ODA*, Tetsuo YOSHIO* and Kazuo O-OKA*

(Received September 17, 1984)

Synopsis

Succeeding to 60[Ba,Sr]TiO$_3$-10Al$_2$O$_3$-30SiO$_2$ glass-ceramics reported in our previous paper 1), another type of ferroelectric glass-ceramics was elaborated by the controlled growth of Ba$_{1-x}$Ca$_x$TiO$_3$ crystal particles in the glass system 60[Ba$_{1-y}$Ca$_y$]TiO$_3$-10Al$_2$O$_3$-30SiO$_2$ (0.0\textless{}y\textless{}0.25) in molar basis. Analysis of crystal phases by X-ray diffraction revealed that Ca content in the crystal phase of Ba$_{1-x}$Ca$_x$TiO$_3$ increased with increasing amount of CaO in glass up to y=0.125, and the composition of Ba$_{1-x}$Ca$_x$TiO$_3$ solid solution was restricted by x=0.225. Curie points (T$_C$) of the present glass-ceramics were independent of the composition of Ba$_{1-x}$Ca$_x$TiO$_3$, however temperature coefficients of ε were lowered by the addition of increasing amount of CaO. Frequency dependencies of dielectric constant and loss tangent were examined in the frequency range from 1 kHz to 1 MHz.

1. Introduction

As well known, the dielectric properties of a sintered BaTiO$_3$ body around room temperature are usually improved by the addition of particular oxides. SrO acts as the 'shifter', which shifts its Curie point (T$_C$) to lower temperature by the formation of Ba$_{1-x}$Sr$_x$TiO$_3$ solid solution. While, CaO acts as the 'depresser', which causes the lower...
temperature coefficient of ε by the formation of $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ solid solution2). In the previous paper, authors reported the preparation of the glass-ceramics in the system $60[\text{Ba}_{1-y}\text{Sr}_y]\text{TiO}_3-10\text{Al}_2\text{O}_3-30\text{SiO}_2$, and its dielectric properties. It was clarified that SrO added in the glass acted as the 'shifter' of ferroelectric glass-ceramics.

Succeeding to $60[\text{Ba},\text{Sr}]\text{TiO}_3-10\text{Al}_2\text{O}_3-30\text{SiO}_2$ glass-ceramics, glass-ceramics in the system $[\text{Ba,Ca}]\text{TiO}_3-\text{Al}_2\text{O}_3-\text{SiO}_2$ were studied. If the solid solution of $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ could be grown in the glass matrix, a useful ferroelectric materials with high dielectric constant(ε) and low temperature coefficient of ε could be prepared. The present experiments were conducted to confirm such prediction and a new glass-ceramics with crystalline phase of $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ was successfully elaborated in the system $60[\text{Ba}_{1-y}\text{Ca}_y]\text{TiO}_3-10\text{Al}_2\text{O}_3-30\text{SiO}_2$.

This paper describes the preparation of the glass-ceramics, the analysis of crystalline phases grown by the heat-treatment, the determination of the composition of $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ solid solution and the dielectric properties of the present glass-ceramics.

2. Experimental

Reagent grade chemicals of BaCO_3, CaCO_3, TiO_2, Al_2O_3 and SiO_2 were used as raw materials. These chemicals were mixed to obtain glasses with composition shown in Table 1 and the mixtures were melted in a Pt crucible at 1400°C for 2 hr in an electric furnace. During melting, glass melt was stirred by a Pt rod. Melts were then poured on a stainless steel plate and disc samples of 20mm in diameter and 2mm thickness were obtained by cutting and polishing. Samples were then heat-treated to grow crystal phase for 1 hr at 1100°C.

X-ray powder diffraction analysis was performed by an X-ray diffractometer and microstructure was examined by a Scanning Electron Microscope. Dielectric properties were measured by an Impedance Analyzer.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$60[\text{Ba}_{1-y}\text{Ca}_y]\text{TiO}_3-10\text{Al}_2\text{O}_3-30\text{SiO}_2$ (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-0</td>
<td>$y=0.0$</td>
</tr>
<tr>
<td>BC-1</td>
<td>$=0.083$</td>
</tr>
<tr>
<td>BC-2</td>
<td>$=0.100$</td>
</tr>
<tr>
<td>BC-3</td>
<td>$=0.125$</td>
</tr>
<tr>
<td>BC-4</td>
<td>$=0.167$</td>
</tr>
<tr>
<td>BC-5</td>
<td>$=0.250$</td>
</tr>
</tbody>
</table>
3. Experimental Results and Discussion

1) Differential thermal analysis
 DTA curves for some glass samples were shown in Fig.1. Three exothermic peaks were observed, a sharp peak around 830°C and two broad peaks around 930°C and 1020°C. All of those exothermic peaks were due to the crystallization of glasses. The sharp exothermic peak around 830°C shifts to higher temperature with increasing content of CaO in glasses.

2) Microstructure of glass-ceramics
 Scanning electron micrographs are shown in Fig.2. Microstructures were similar for all samples heat-treated at 1100°C for 1 hr, and $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ were almost uniform in size ($\approx 0.2 \mu\text{m}$ in diam.).

3) Crystalline phases grown at 1100°C
 (1) Crystalline phases grown in BC-0.5 ($0.0 \leq y \leq 0.25$)
 X-ray diffraction patterns of glasses heat-treated at 1100°C for 1 hr were shown in Fig.3 a), b), c). Main crystal phase was $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$ which peaks shifted to higher angle with increasing content of CaO in glass. Other two crystal phases were identified as β-BaSi_2O_5 and β-$\text{BaAl}_2\text{Si}_2\text{O}_8$. Observed crystal phases were similar to those observed on 60[Ba,Sr]TiO_3-10Al_2O_3-30SiO_2 glass-ceramics.
Fig. 3 X-ray diffraction patterns of BC-0, 1, 5 glasses heat-treated at 1100°C for 1 hr a) BC-0, b) BC-1, c) BC-5

(2) Composition of Ba_{1-x}Ca_xTiO_3 solid solution

The compositions of Ba_{1-x}Ca_xTiO_3 grown by the heat-treatment were calculated with the following relation between \(\frac{1}{a^2}c \) and x in the same manner as described in the previous paper 1, 3.

\[
x = \frac{\frac{1}{a^2}c_{BaTiO_3} - \frac{1}{a^2}c_{Ba_{1-x}Ca_xTiO_3}}{\frac{1}{a^2}c_{BaTiO_3} - \frac{1}{a^2}c_{CaTiO_3}}
\]

Where, \(\frac{1}{a^2}c \) was calculated using \(d_{111} \) and \(d_{211} \). The relation between y of 60[Ba_{1-y}Ca_y]TiO_3-10Al_2O_3-30SiO_2 glasses are shown in Fig. 4. It was clarified that Ca in the glass preferentially transferred into BaTiO_3 crystal in the composition range of 0.0 \(\leq y \leq 0.125 \) during the heat-treatment, however even further addition of Ca to the glass didn't allow to form Ba_{1-x}Ca_xTiO_3 beyond x=0.225. Above result coincides with that of solid state Fig. 4 Relation between y of 60[Ba reaction between BaTiO_3 and CaTiO_3 \(\cdot \left(1-\frac{1}{y} \right) \) TiO_3-10Al_2O_3-30SiO_2 glasses and x of Ba_{1-x}Ca_xTiO_3.
The phase diagram of BaTiO$_3$-CaTiO$_3$ determined by DeVries and Roy indicates that the formation of Ba$_{1-x}$Ca$_x$TiO$_3$ solid solution was restricted in the composition range from $x=0.0$ to $x=0.26$. Similarly, the composition of Ba$_{1-x}$Ca$_x$TiO$_3$ solid solution in the present glass-ceramics was restricted in the range up to $x=0.225$.

4) Dielectric properties

(1) Dielectric constant (ε)

Temperature dependence of ε for the samples crystallized at 1100°C for 1 hr are shown in Fig.5. The figure indicates that T_c is independent of CaO content in Ba$_{1-x}$Ca$_x$TiO$_3$, however ε at T_c decreases with increasing amount of CaO in glasses. The decrease of ε at T_c with y is caused by the formation of Ba$_{1-x}$Ca$_x$TiO$_3$. The compositional dependence of ε at T_c may be taken for the product of two factors, namely volume fraction of Ba$_{1-x}$Ca$_x$TiO$_3$ in the sample and its ε. From the result of X-ray diffraction, the amount of crystal grown in the glass decreases with increasing amount of CaO, and it has been known that ε of Ba$_{1-x}$Ca$_x$TiO$_3$ decreases with increasing x. Thus, the product of above two factors indicates to depress ε with the increase of CaO amount. Above results indicate that CaO in the present glass-ceramics plays a role as 'depresser'.

(2) Frequency dependencies of ε and tanδ

Frequency dependence of ε of the present glass-ceramics are shown in Fig.6. In the frequency range from 1 kHz to 1 MHz, ε decreases with increasing frequency. Fig.7 shows the frequency dependence of tanδ in the same range. Loss tangent of the crystallized glass gradually increases with increasing frequency, the same trend is observed on the sintered ferroelectric ceramics. Comparatively high values of tanδ may be caused by the surperposition of glassy matrix with high tanδ.
Fig. 6 Frequency dependence of ε of test glasses heat-treated at 1100°C for 1 hr

Fig. 7 Frequency dependence of $\tan\delta$ test glasses heat-treated at 1100°C for 1 hr

4. Conclusion

Succeeding to a series of 60[Ba,Sr]TiO$_3$-10Al$_2$O$_3$-30SiO$_2$ glass-ceramics, another type of glasses with the composition 60[Ba$_{1-y}$Ca$_y$]TiO$_3$-10Al$_2$O$_3$-30SiO$_2$ were prepared and were heat-treated at 1100°C for 1 hr. Crystal phases grown in the glass-ceramics were analyzed, temperature and frequency dependence of ε and $\tan\delta$ were measured. Following results were obtained.

1) A glass-ceramics with comparatively low temperature coefficient of ε was successfully obtained, which consisted of Ba$_{1-x}$Ca$_x$TiO$_3$ as main crystal phase.

2) β-BaSi$_2$O$_5$ and β-BaAl$_2$Si$_2$O$_8$ were grown as coexisting crystal phases by the heat-treatment at 1100°C for 1 hr.

3) Ca in the glass preferentially transferred into BaTiO$_3$ crystal in the composition range where y is less than 0.125, however even further addition of Ca to the glass didn't allow to form Ba$_{1-x}$Ca$_x$TiO$_3$ beyond $x=0.225$.

4) Curie points (T_C) of glass-ceramics were independent of the composition of Ba$_{1-x}$Ca$_x$TiO$_3$. While, ε decreased with increasing amount of CaO. Above fact indicates that CaO acts as the 'depresser' in the same manner as sintered ceramics.

5) In the range from 1 k to 1 M Hz, frequency dependencies of
Preparation and Properties of [Ba, Ca] TiO$_2$-Al$_2$O$_3$-SiO$_2$

...tanδ for the present glass-ceramics showed the same trend as those of sintered ceramics.

References