Association of increased number of bronchoalveolar lymphocytes with patient age and IgE-mediated allergic reaction

Yoshiro Tanizaki, Hikaru Kitani, Takashi Mifune, Fumihiro Mitsunobu and Ikuro Kimura*

Division of Medicine, Misasa Medical Branch, Second Department of Medicine, Okayama University Medical School

Abstract: The proportion and number of lymphocytes in the airways were analyzed in 15 patients with a high proportion of lymphocytes in bronchoalveolar lavage (BAL) fluid (more than 30%) and in 17 patients with less than 20% of BAL lymphocytes. 1. Both atopic and nonatopic asthma patients with a high proportion of BAL lymphocytes were aged more than 50 years. In contrast, the age of patients with less than 20% of BAL lymphocytes ranged widely, from 29 to 63 years, in the two asthma types. 2. Age at onset of the disease, serum IgE levels, and ventilatory function test were not related to the proportion of BAL lymphocytes. 3. In patients with a high proportion of BAL lymphocytes, the mean proportion of these cells was 47.3% in atopic patients and 36.4% in non-atopic patients, i. e., there was no significant difference between the two asthma types. The absolute number of BAL lymphocytes in these patients was significantly higher in atopic \(5.62 \times 10^8\) than in nonatopic asthma \(0.77 \times 10^8\) \(p<0.01\).

These findings show that an increased number of lymphocytes in the airways is clearly related to patient age and IgE-mediated allergic reaction.

Key words: BAL lymphocytes, patient age, IgE-mediated allergic reaction, bronchial asthma

Introduction

IgE-mediated allergy is a major immunological reaction participating in the pathogenesis of bronchial asthma \(1 - 3\); asthma induced by IgE-mediated allergy is known as atopic. Thus, bronchial asthma is usually divided into two types clinically, atopic and nonatopic, on the basis of the presence or absence of IgE-mediated allergic reactions \(4\), although investigators in several studies have suggested that asthma is
almost always associated with some type of
IgE-related reaction (5, 6). In classifying
asthma by the presence or absence of IgE-
mediated allergic reactions, it has been sug-
gested that there are some differences be-
tween the mechanism of onset in atopic and
nonatopic types.

In recent years, airway inflammation, in
which lymphocytes, neutrophils, eosinophils,
and basophils from the bloodstream are
involved (7-12), has been noted as a major
causative factor in late asthmatic reaction
(LAR) (13, 14). In the inflammatory process,
blood cells migrate into allergic reaction
sites, and these cells play an important role
in the pathogenesis of asthma.

In the present study, we evaluated the
association between BAL lymphocyte number
and the pathogenesis of asthma in patients
with atopic and nonatopic asthma.

Subjects and Methods

To observe the association between lympho-
cyte number in the airways and the patho-
genesis of asthma, we selected 15 asthma
patients (5 females and 10 males; mean age
62.0 years, range 51-73 years) with an
increased proportion of lymphocytes more
than 30% in bronchoalveolar lavage (BAL)
fluid. Seventeen asthma patients (7 females
and 10 males; mean age 47.8 years, range 29-
63 years) with less than 20% of BAL lym-
phocytes were selected as control subjects.
These patients were further divided into two
asthma types, atopic and nonatopic, on the
basis of IgE-mediated allergic reactions (15):
patients with IgE antibodies to inhalant
allergens or serum IgE level over 500 IU/ml
were evaluated as atopic, and those with
negative skin reaction to allergens and serum
IgE levels less than 100 IU/ml were
evaluated as nonatopic.

Bronchoalveolar lavage (BAL) was per-
formed after informed consent was obtained
from all subjects. The BAL examination was
carried out, according to a previously
described method (15-18), in all subjects
when they were free of attacks. Smear pre-
parations were made with cell suspen-
sions prepared from samples obtained by
bronchofiberscope. Slides containing these
suspensions were air dried and stained with
May Giemsa. BAL cytology was performed
by observing 500 cells, excluding epithelial
cells, on the smear preparations. In this
study, the mean recovery rate at BAL was
28.2 ± 15.2% (10.0% - 74.0%) and the total
number of cells aspirated in the BAL fluid
was 5.48 × 10⁶ (0.4 × 10⁶ - 24.6 × 10⁶). The
results were expressed as a percentage of the
total cell number and as an absolute count in
BAL fluid.

Ventilatory function tests, using a Box
Spiror 81-S (Chest Co.), was carried out in
all subjects when they were asymptomatic.
Immediate skin reaction to allergens was
determined following the intradermal injec-
tion of 0.02 ml of commercial allergen extract
(Torii pharmaceutical Co.). The skin reaction
was measured in millimeters at 20 min after
the test. Wheals larger than 9 mm or flares
larger than 20 mm at 20 min were regarded as
positive.

Serum IgE levels were measured by a
radioimmunosorbent test (RIST) and IgE
antibodies to inhalant allergens were evalu-
ated by a radioallergosorbent test (RAST).

Results

Age of all atopic asthma patients with a
high proportion of BAL lymphocytes (more
than 30%) was more than 50 years (mean
59.8 years). In contrast, the age of atopic asthma patients with less than 20% of BAL lymphocytes ranged widely, from 29 to 59 years (mean 42.7 years). In nonatopic asthma, the age of all patients with a high proportion of BAL lymphocytes was also more than 50 years (mean 65.3 years), while in nonatopic patients with less than 20% of BAL lymphocytes, the age ranged from 50 to 63 years (mean 57.0 years), as shown in Fig. 1. Thus, the age of patients with a high proportion of BAL lymphocytes was, in general, high (over 50 years).

|| Asthma type | % BAL lymphocytes | Age(years) |
|---|---|---|
| Atopic | 30% < | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| | < 20% | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| Nonatopic | 30% < | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| | < 20% | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)

Fig. 1. Age in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.

Figure 2 shows the age at onset of the disease in all subjects. There was no significant difference between atopic asthma patients with more than 30% of BAL lymphocytes and those with less than 20% in age at onset of the disease. There was also no difference in age at onset between nonatopic asthma patients classified by the proportion of BAL lymphocytes. In atopic asthma patients with a high proportion of BAL lymphocytes, the mean level of serum IgE was 726 ± 664 IU/ml, and in those with less than 20% of BAL lymphocytes it was 947 ± 808 IU/ml. There was no significant difference between the two groups. In nonatopic asthma patients, the serum IgE level was low, and there was no significant difference between patients with a high proportion of BAL lymphocytes (51 ± 42 IU/ml) and those with less than 20% of BAL lymphocytes (71 ± 28 IU/ml).

<table>
<thead>
<tr>
<th>Asthma type</th>
<th>% BAL lymphocytes</th>
<th>Age at onset(years)</th>
</tr>
</thead>
</table>
| Atopic | 30% < | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| | < 20% | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| Nonatopic | 30% < | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)
| | < 20% | ![Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.](image)

Fig. 2. Age at onset of the disease in atopic and nonatopic asthma patients in relation to proportion of BAL lymphocytes.

Table 1 shows the ventilatory function in patients classified by proportion of BAL lymphocytes. FEV1.0% value was lowest in nonatopic asthma patients with a high proportion of BAL lymphocytes and highest in those with less than 20% of BAL lymphocytes. The other ventilatory parameters, %PEFR, %MMF, %V50, and %V25 were also lowest in nonatopic asthmatics with a high proportion of BAL lymphocytes. In patients classified by the proportion of BAL lymphocytes and by IgE-mediated allergic reaction, however, there were no significant differences in the values of these ventilatory parameters.
Table 1. Ventilatory function in patients with atopic and nonatopic asthma in relation to proportion of BAL lymphocytes.

<table>
<thead>
<tr>
<th>Asthma type</th>
<th>%BAL lymphocytes</th>
<th>%FVC</th>
<th>FEV1%</th>
<th>%PEFR</th>
<th>%MMF</th>
<th>%MV</th>
<th>%Vt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic</td>
<td>30% < 98.6±6.9</td>
<td>72.1</td>
<td>43.2</td>
<td>29.0</td>
<td>17.2 ± 7.5</td>
<td>22.1 ±22.8</td>
<td>20.0 ±14.9</td>
</tr>
<tr>
<td></td>
<td><20% 68.4±11.4</td>
<td>69.7</td>
<td>40.8</td>
<td>28.1</td>
<td>11.4 ± 13.6</td>
<td>25.1 ±24.8</td>
<td>16.9 ±18.2</td>
</tr>
<tr>
<td>Nonatopic</td>
<td>30% < 78.2±17.8</td>
<td>53.1</td>
<td>34.0</td>
<td>22.4</td>
<td>17.8 ± 16.8</td>
<td>18.3 ±30.9</td>
<td>25.1 ±31.2</td>
</tr>
<tr>
<td></td>
<td><20% 102.1±15.1</td>
<td>19.3</td>
<td>36.8</td>
<td>25.2</td>
<td>11.1 ± 18.1</td>
<td>24.3 ±13.9</td>
<td>9.1 ±9.1</td>
</tr>
</tbody>
</table>

*Mean±SD

In both atopic and nonatopic asthma, the proportions of macrophages, neutrophils and eosinophil in BAL fluid were higher in patients with less than 20% of BAL lymphocytes than in those with a high proportion of BAL lymphocytes. However, this difference was not significant (Table 2).

Table 2. Cellular composition in BAL fluid of patients with atopic and nonatopic asthma in relation to proportion of BAL lymphocytes.

<table>
<thead>
<tr>
<th>Asthma type</th>
<th>%BAL lymphocytes</th>
<th>Mac</th>
<th>Lym</th>
<th>Neut</th>
<th>Eos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic</td>
<td>30% < 49.6±11.6</td>
<td>47.3</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td><20% 75.5±20.1</td>
<td>11.5</td>
<td>8.6</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Nonatopic</td>
<td>30% < 56.0±6.4</td>
<td>36.4</td>
<td>5.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td><20% 74.3±26.3</td>
<td>5.3</td>
<td>13.2</td>
<td>3.1</td>
<td></td>
</tr>
</tbody>
</table>

*Mean±SD. Mac, macrophages; Lym, lymphocytes; Neut, neutrophils; Eos, eosinophils.

In patients with a high proportion of BAL lymphocytes (more than 30%), the mean value was 47.3±11.8% (range 30.4% - 73.7%) in atopic asthma and 36.4±3.6% (range 31.4% - 42.1%) in nonatopic asthma. Although the mean value was higher in atopic than in nonatopic asthma, the difference was not significant. In patients with less than 20% of BAL lymphocytes, the mean value was higher in atopic asthma (11.5±5.4%) than in nonatopic asthma (5.3±4.8%), as shown in Fig. 3. However, this difference was not significant.

Fig. 3. Proportion of BAL lymphocytes in patients with atopic (□) and nonatopic asthma (□□□□).

The percent recovery at BAL was significantly higher in atopic than in nonatopic asthma patients with a high proportion of BAL lymphocytes (p<0.02). The total cell number in BAL fluid was greatest in atopic patients with a high proportion of BAL lymphocytes; this value was significantly higher than that in atopic patients with less than 20% of BAL lymphocytes (p<0.01), in nonatopic patients with more than 30% of BAL lymphocytes (p<0.01), and in nonatopic
patients with less than 20% of BAL lymphocytes (p<0.01). The number of lymphocytes in the BAL fluid was significantly higher in atopic than in nonatopic asthma patients with a high proportion of BAL lymphocytes (P<0.01; as shown in Table 3 and Fig. 4), although there was no significant difference in the proportion of BAL lymphocytes in these atopic and nonatopic asthma patients. The numbers of total cells and lymphocytes per mL of BAL fluid were also significantly higher in atopic asthma patients with a high proportion of BAL lymphocytes compared with those in the other three groups, as shown in Table 4.

Table 3. BAL findings in patients with atopic and nonatopic asthma (1)

<table>
<thead>
<tr>
<th>Asthma type</th>
<th>%BAL lymphocytes</th>
<th>Percent recovery</th>
<th>Total cells (×10⁶)</th>
<th>No of lymphocytes (×10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%</td>
<td>36.2±8</td>
<td>11.2±0.7</td>
<td>5.6±0.4</td>
<td></td>
</tr>
<tr>
<td>Atopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20%</td>
<td>26.2±12.5</td>
<td>3.4±2.4</td>
<td>0.48±0.37</td>
<td></td>
</tr>
<tr>
<td>Nonatopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20%</td>
<td>19.8±7.8</td>
<td>2.1±1.6</td>
<td>0.77±0.77</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. BAL findings in patients with atopic and nonatopic asthma (2)

<table>
<thead>
<tr>
<th>Asthma type</th>
<th>ZBAL lymphocytes</th>
<th>Recovery volume (mL)</th>
<th>Total cells (×10⁶)</th>
<th>No of lymphocytes (×10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%</td>
<td>72.1±16.1</td>
<td>15.5±0.0</td>
<td>7.05±0.9</td>
<td></td>
</tr>
<tr>
<td>Atopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20%</td>
<td>53.0±26.1</td>
<td>6.0±3.3</td>
<td>0.71±0.57</td>
<td></td>
</tr>
<tr>
<td>Nonatopic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20%</td>
<td>37.1±15.5</td>
<td>4.5±2.7</td>
<td>1.83±0.92</td>
<td></td>
</tr>
<tr>
<td><20%</td>
<td>56.0±34.1</td>
<td>6.0±2.8</td>
<td>0.44±0.45</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

It has been suggested that lymphocytes play an important role in the pathogenesis of asthma: increased numbers of activated blood T cells are found during asthma attacks (19, 20), and CD4+ T-lymphocytes are reduced in peripheral blood and sequestered in the lung (21). Thus, the activation of T-lymphocytes and the production of lymphokines appear to be involved in the pathogenesis of asthma (22, 23). It has been shown, also, that the number of lymphocytes in BAL fluid is increased in patients with asthma (24, 25), with the median percentage...
lymphocyte count in asthmatic patients being 14%, while that of controls was 8% (25). Lymphocyte counts of more than 14% are unusual in normal subjects (26). It has been demonstrated that the increase of BAL lymphocytes in asthmatics is due to the increase of T cell subsets (27). Furthermore, it has been shown that there is a close correlation between numbers of BAL CD4+ IL2R+ T cells and numbers of eosinophils, and that the numbers of activated T cells and eosinophils are related to the severity of asthma, as determined by impairment of FEV 1.0% and increased methacholine bronchial responsiveness (28).

In the present study, the clinical features of asthma patients with a high proportion of BAL lymphocytes (more than 30%) were observed in comparison with those with less than 20% of BAL lymphocytes. The age of both atopic and nonatopic asthma patients with a high proportion of BAL lymphocytes was over 50 years. These results show that age is one of the factors related to the high proportion of BAL lymphocytes in the two asthma types. However, age at onset of the disease, serum IgE levels, and ventilatory test results were not related to the proportion of BAL lymphocytes.

In this study, we selected both atopic and nonatopic asthma patients with high proportions of BAL lymphocytes (more than 30%). Although the proportion of BAL lymphocytes was not significantly different in atopic (47.3%) and nonatopic asthma (36.4%), the mean value was higher in the former. In contrast, the absolute number of BAL lymphocytes was significantly higher in atopic (5.62×10⁴) than in nonatopic asthma (0.77×10⁴). These results demonstrate that the number of lymphocytes in the airways is related to IgE-mediated allergic reaction.

It was unclear from the present study which factors, except for age, are implicated in the differences of BAL lymphocyte proportions in atopic asthma. Five of the 9 atopic patients (55.6%) with a high proportion of BAL lymphocytes had asthma attacks within one month after BAL examination. In contrast, 2 of the 11 atopic patients (18.2%) with less than 20% of BAL lymphocytes had asthma attacks during this period. The number of patients whose asthma attacks required glucocorticoid therapy was greater in atopic patients with a high proportion of BAL lymphocytes (5/9 : 55.6%) than in those with less than 20% of BAL lymphocytes (3/11 : 27.3%). These findings suggest that an increased number of lymphocytes in the airways is associated with both the acute exacerbation and the severity of asthma. Further studies, including analysis of lymphocyte subsets and cell surface markers, are necessary to clarify the mechanisms responsible for this phenomenon.

References

20. Corrigan CJ, Kay AB: CD4 T-lymphocyte

気管支肺胞洗浄液中リンパ球増多と患者年齢およびIgE系アレルギー反応との関連について

谷崎勝朗，貴谷 光，御船尚志，光延文裕，木村郁郎 1)

岡山大学医学部第三内科，1)医学部第2内科

気管支肺胞洗浄（BAL）液中のリンパ球頻度が30％以上の15例および20％以下の17例の気管支哮発症患者を対象に，BAL液中リンパ球頻度と年齢およびIgE系反応との関連について検討を加えた。1. BALリンパ球が高頻度（30％以上）を示す症例は，アトピー型，非アトピー型を問わず，50才以上の年齢層に多い傾向が見られた。一方，BALリンパ球20％以下の症例の年齢は，29–63才まで幅広く分布していた。2. 発症年齢，血清IgE値，換気機能とBAL液中リンパ球頻度との間には関連は見られなかった。3. BAL液中リンパ球頻度が高い症例では，アトピー型では平均リンパ球頻度47.3％，非アトピー型では36.4％であったが，両群間には有意の差は見られなかった。しかし，BAL液中のリンパ球の絶対数は，アトピー型（5.62×10⁶）において，非アトピー型（0.77×10⁶）に比べ有意に高い値を示した（p<0.01）。

これらの結果は，気道内リンパ球の増加は，患者年齢とIgE系反応と密接に関連していることを示唆している。