Difference in small airway inflammation between type II (bronchiolar obstruction) asthma and obstructive bronchiolitis

Takashi Mifune, Fumihiro Mitsunobu, Yasuhiro Hosaki, Kouzou Ashida, Satoshi Yokota, Hirofumi Tsugeno, Kazuaki Takeuchi, Yuichiro Nawa, Yoshiro Tanizaki, Shinya Tada1 and Mine Harada1

Division of Medicine, Misasa Medical Branch, 1Second Department of Medicine, Okayama University Medical School

Abstract: Ventilatory function and inflammatory cells in airways were compared between patients with type II (bronchiolar obstruction) asthma and those with obstructive bronchiolitis. 1. Age and age at onset were higher in patients with type II asthma than in those with obstructive bronchiolitis. IgE-mediated allergic reaction was observed in patients with type II asthma, but not in those with obstructive bronchiolitis. 2. In ventilatory function tests, all ventilatory parameters examined were lower in patients with type II asthma compared to those with obstructive bronchiolitis, and the differences were significant in FEV1.0% (p<0.001), %MMF (p<0.02), and V50 (p<0.01). 3. The proportion of BAL neutrophils was very high in type II asthma (66.7%) and obstructive bronchiolitis (74.4%), however, this was not significant. 4. Absolute numbers/BAL fluid of total cells, BAL macrophages and BAL neutrophils were significantly higher in patients with obstructive bronchiolitis than in those with type II asthma. 5. The results on absolute number/mL of BAL cells demonstrated that number of BAL neutrophils markedly larger in patients with obstructive bronchiolitis compared to those with type II asthma.

These results show that high proportion of BAL neutrophils was observed in the two respiratory diseases, however, the degree of inflammation in airways was markedly greater in obstructive bronchiolitis.

Key words: Type II asthma, Obstructive bronchiolitis, Ventilatory function, BAL neutrophils, IgE-mediated allergy

Introduction

Inhalation of a relevant allergen induces immediate bronchoconstriction, and late asthmatic reaction1-3), and then airway hyperresponsiveness4-9). Allergen-induced airway hyperresponsiveness is associated with
Type II asthma and obstructive bronchiolitis

migration of inflammatory cells, lymphocytes4-8, neutrophils9,10, eosinophils11-13, and basophils14. Thus, airway inflammation is a common feature of bronchial asthma15.

Among three clinical types of asthma (type la. simple bronchoconstriction, type lb. Bronchoconstriction+hypersecretion, and type II. bronchiolar obstruction), type II asthma is characterized by increased number of neutrophils in bronchoalveolar lavage (BAL) fluid and marked decrease in values of FEV1.0 and \(V_{25} 16-18 \). In contrast, obstructive bronchiolitis, which is increasing in recent years as the number of aged-patients increases, is also characterized by BAL neutrophilia and obstructive ventilatory dysfunction in small airways.

In the present study, difference in inflammation of small airways between type II asthma and obstructive bronchiolitis was examined by analyzing ventilatory function, and the proportion and number of BAL cells.

Subjects and Methods

The subjects of this study were 7 patients (1 female and 6 males) with type II (bronchiolar obstruction) asthma, and 9 patients (4 females and 5 males) with obstructive bronchiolitis. Type II asthma was assessed according to a asthma classification method by clinical symptoms (clinical diagnosis)16-18. The subjects were reevaluated by a score calculated from clinical findings and examinations (score diagnosis)19. Obstructive bronchiolitis was diagnosed by chest X ray finding, clinical findings and examinations.

BAL was performed according to a previously described method16-20 when the subjects were attack-free. Informed consent for this BAL procedure was obtained from all study subjects. The cell pellet obtained by centrifugation of BAL fluid was resuspended in Tris ACM. BAL cytology was performed by observing 500 cells, excluding epithelial cells, on smear preparations which were made from BAL cell suspensions and stained with May-Giemsa. The results were expressed as percentages of the total cells, and absolute number (\(\times 10^6 \) BAL fluid and \(\times 10^4 \) ml).

Ventilatory function tests, using a Box Spiror 81S (Chest Co), were performed in all subjects when they were free of attack.

The level of serum IgE was measured by the radioimmunosorbent test (RIST) and IgE antibodies to inhalant allergens were evaluated by the radioallergosorbent test (RAST).

Statistically significant differences of the mean were estimated using the unpaired Student' t test. A p value of <0.05 was regarded as significant.

Results

Table 1 shows characteristics of patients with type II asthma and those with obstructive bronchiolitis. Age and age at onset of the disease were higher in patients with type II asthma than in those with obstructive bronchiolitis. The mean level of serum IgE was higher in type II asthma patients compared to those with obstructive bronchiolitis.

<table>
<thead>
<tr>
<th>Disease</th>
<th>No of patients</th>
<th>Age (years)</th>
<th>Age at onset (years)</th>
<th>Serum IgE (IU/ml)</th>
<th>RAST to HDm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II asthma</td>
<td>7</td>
<td>58.9</td>
<td>45.1</td>
<td>389 (105-1820)</td>
<td>2/7</td>
</tr>
<tr>
<td>Obstructive Bronchiolitis</td>
<td>9</td>
<td>48.8</td>
<td>41.7</td>
<td>115 (45-309)</td>
<td>0/9</td>
</tr>
</tbody>
</table>

HDm, house dust mite
RAST to house dust mite (HDm) was positive in 2 of 7 patients with type II asthma, however, no patients with obstructive bronchiolitis showed a positive RAST to HDm and other inhalant allergens.

In ventilatory function tests, 6 ventilatory parameters were applied to evaluate difference between the two respiratory diseases. The values of all ventilatory parameters were lower in patients with type II asthma than in those with obstructive bronchiolitis. The differences were significant in FEV1.0% (p<0.001), %MMF (p<0.02) and %V50 (p<0.01), as shown in Fig. 1.

The proportion of BAL cells was compared in the two diseases. The proportion of BAL macrophages (Mac) was higher in patients with type II asthma, however, this was not significant. The proportion of BAL neutrophils (Neut) was very high in both respiratory diseases, and the proportion was higher in patients with obstructive bronchiolitis (74.4%) compared to those with type II asthma (55.7%). However, this was not significant. The proportions of BAL lymphocytes (Lymph) and eosinophils (Eos) were not different between the two diseases (Fig. 2).

Comparison of absolute number/ml of BAL cells is demonstrated in Table 2. The recovery rate of BAL fluid was significantly larger in patients with obstructive bronchiolitis than in those with type II asthma. The absolute numbers/ml of total cells (p<0.01), BAL macrophages (p<0.02), and BAL neutrophils (p<0.05) were significantly higher in patients with obstructive bronchiolitis than in those with type II asthma. Figure 3 reveals absolute numbers/ml of BAL cells. The number of BAL neutrophils was markedly larger (88.3 \times 10^4 /ml) in patients with obstructive bronchiolitis compared to the number (10.8 \times 10^4 /ml) in those with type II asthma.

Discussion

Clinical symptoms of patients with type II (bronchiolar obstruction) asthma are
Table 2. Absolute number of BAL cells in patients with type II asthma and obstructive bronchiolitis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Recovery rate (%)</th>
<th>Mac (x 10^6)</th>
<th>Lymph (x 10^6)</th>
<th>Neut (x 10^6)</th>
<th>Eos (x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II asthma</td>
<td>18.6 ±8.9</td>
<td>4.8 ±3.1</td>
<td>177 ±105</td>
<td>29 ±18</td>
<td>249 ±26</td>
</tr>
<tr>
<td>Obstructive bronchiolitis</td>
<td>39.2 ±19.3</td>
<td>50.2 ±40.1</td>
<td>775 ±537</td>
<td>420 ±630</td>
<td>3787 ±3123</td>
</tr>
</tbody>
</table>

a,p<0.05, b,p<0.01, c,p<0.02, d,p<0.05.

Fig. 3. Absolute number (×10^6/mL) of BAL cells in patients with type II asthma (■) and obstructive bronchiolitis (). a,p<0.02.

attacks has been also noted in recent years21, 22.

Our previous studies have shown that type II, bronchiolar obstruction, asthma is characterized by an increase in number of BAL neutrophils and marked decrease in the value of ventilatory parameters such as FEV\textsubscript{1.0} and %V\textsubscript{25}-%V\textsubscript{50}. BAL neutrophilia in type II asthma might be associated with suppressed humoral and cellular immunity23, which is mainly caused by long-term glucocorticoid therapy.

In this study, the two respiratory diseases, which have resemble pathophysiological changes in airways were compared in relation to ventilatory function and proportions and numbers of BAL cells. In ventilatory function tests, the values of all parameters measured were lower in patients with type II asthma than in those with obstructive bronchiolitis, and the differences were significant in %FEV\textsubscript{1.0}, %MMF, and %V\textsubscript{50}, which represent airway narrowing. The results suggest that airway narrowing is stronger in patients with type II asthma compared to those with obstructive bronchiolitis.

Regarding airway inflammation, a high proportion of BAL neutrophils was observed in both respiratory diseases, however, the difference between the two diseases was not significant. Absolute numbers per BAL fluid and per mL of BAL neutrophils were markedly and significantly larger in patients with obstructive bronchiolitis than in those with type II asthma. Furthermore, the numbers/BAL fluid of total cells and macrophages were also significantly higher in patients with obstructive bronchiolitis. These results demonstrate that airway inflammation is markedly stronger in patients with obstructive bronchiolitis compared to that in
those with type II asthma.

References

tolini S, Crimi P and Brusasco V: Late
asthmatic reaction to perennial and
seasonal allergens. J Allergy Clin Immunol

2. Durham SR: The significance of late
responses in asthma. Clin Exp Allergy 21 :

3. Inman MD, Watson R, Cockcrott DW,
Wong BJO, Hargreave FE and O'Byrne P M:
Reproducibility of allergen-induced
early and late asthmatic responses. J Al­

4. Cartier A, thomson NC, Frith PA,
Roberts R and Hargreave FE: Allergen­
induced increase in bronchial responsiveness
to histamine: relationship to the late
asthmatic response and change in airway
caliber. J Allergy Clin Immunol 70 : 170­
177, 1982.

5. Gibbons WJ, Sharma A, Lougheed D and
Macklem PT: Detection of excessive
bronchoconstriction in asthma. Am J
Respir Crit Care Med 153 : 582-589, 1996.

Hendrick DJ and Walteres EH: Lymphocyt­
e subsets in bronchoalveolar lavage fluid
obtained from stable asthmatics, and their
correlations with bronchial responsiveness.

7. Walker C, Kaegi MK, Braun P and Blaser
K: Activated T cells and eosinophilia in
bronchoalveolar lavages from subjects with
asthma correlated with disease severity. J

8. Wilson JW, Djukanovic R, Howarth PH
and Holgate ST: Lymphocyte activation in
bronchoalveolar lavage and peripheral blood
in atopic asthma. Am Rev Respir Dis 145 :

9. Miadonna A, Milazzo N, Lorini M, Sala
A and Tedeschi A: Nasal neutrophilia and
release of myeloperoxidase induced by nasal
challenge with platelet activating factor: Dif­
f erent degrees of responsiveness in
atopic and nonatopic subjects. J Allergy

10. Erjefalt JS, Sundler F and Person CGA:
Eosinophils, neutrophils, and venular gaps
in the airway mucosa at epithelial removal-
restitution. Am J Respir Crit Care Med 153 :
1666-1674, 1996.

11. deMonchy JG, Kauffman H, Venge P,
Koefer GH, Jansen HM, Sluiter HJ and
deVries K: Bronchoalveolar eosinophilia
during allergen-induced late asthmatic
reaction. Am Rev Respir Dis 131 : 373­
376, 1985.

12. Waedlaw AJ, Dunnette S, Gleich GJ,
Colilins JV and Kay AB: Eosinophils and
mast cells in bronchoalveolar lavage in
patients with mild asthma. Relationship to
bronchial hyperresponsiveness. Am Rev

13. Itoh K, Takahashi E, Mukaiyama O,
Satoh Y and Yamaguchi T: Relationship
between airway eosinophilia and airway
hyperresponsiveness in a late asthmatic
model of guinea pigs. Int Arch Allergy

and Takishima T: Mast cells in
bronchoalveolar lavage of patients with
bronchial asthma. Am Rev Respir Dis 129 :

15. Holgate ST, Djukanovic R, Wilson J,
Roche W and Howarth PH: Inflammatory
process and bronchial hyperresponsiveness.
Ⅱ型（細気管支閉塞）喘息と閉塞性細気管支炎における細気管支領域の炎症反応の差

御船尚志、光延文裕、保崎泰弘、芦田耕三、横田 敏、栃野浩史、竹内一昭、名和由一郎、谷崎勝朗、多田慎也 1)、原田実根 1)

岡山大学医学部附属病院三朝分院内科、1)医学部第2内科

Ⅱ型喘息と閉塞性細気管支炎の臨床的特徴について、換気機能および気道炎症反応を中心に検討を加えた。1. 年齢、および発症年齢とも閉塞性細気管支炎に比べⅡ型喘息において高い傾向が見られた。IgE系反応はⅡ型喘息では観察されたが、閉塞性細気管支炎では見られなかった。2. 換気機能では、測定された全ての換気パラメーターにおいて、その値は閉塞性細気管支炎に比べⅡ型喘息でより低い値を示し、FEV1.0％、％MMFおよび％V50では有意の差が見られた。3. BAL液中好中球頻度は、Ⅱ型喘息（55.7％）、閉塞性細気管支炎（74.4％）いずれにおいても高い値を示した
が、両者間に有意の差は見られなかった。4. 一方、BAL液中の絶対数では、Ⅱ型喘息に比べ、閉塞性細気管支炎において、総細胞数、マクロファージおよび好中球数が有意の高値を示した。5. また、1 mlあたりの細胞数の比較でも、閉塞性細気管支炎で好中球数が著明な高値を示した。

これらの結果より、この2疾患では気道内好中球増多は同様に見られるものの、その気道炎症の程度は明らかに閉塞性細気管支炎でより高度であることが示された。

索引用語：Ⅱ型喘息、閉塞性細気管支炎、換気機能、BAL好中球、IgE系反応