Enhanced leukotriene generation and bronchial hyperresponsiveness in asthmatics with allergic rhinitis

Fumihiro Mitsunobu, Yasuhiro Hosaki, Kozo Ashida, Naofumi Iwagaki, Makoto Fujii, Shingo Takata, Masanori Hamada*, and Yoshiro Tanizaki

Division of Medicine and Rehabilitation*, Misasa Medical Center, Okayama University Medical and Dental School

Abstract: Rhinitis frequently precedes asthma, and treating allergic rhinitis has beneficial effects on asthma, suggesting upper airway disease is a risk factor for asthma. The aim of the present study was to investigate the influence of allergic rhinitis on serum IgE level, leukotriene generation by peripheral leukocytes, and bronchial hyperresponsiveness (BHR) to methacholine in patients with atopic asthma. Seventy-one asthmatic subjects (mean age, 59.5±12.5 years; 37 women, 34 men) were recruited, and 48 asthmatics had allergic rhinitis and 23 asthmatics did not have allergic rhinitis. The log_{10}(Dmin) was significantly lower for those with allergic rhinitis than those without allergic rhinitis (p<0.05), implying that those with allergic rhinitis developed BHR to a greater degree than those without allergic rhinitis. LTC\(_4\) generation from peripheral leukocytes was significantly greater for atopic asthmatics with allergic rhinitis than those without allergic rhinitis (p<0.05). In contrast, the amount of LTB\(_4\) produced from peripheral leukocytes did not significantly differ between asthmatic patients with and without allergic rhinitis. These results suggest that the presence of allergic rhinitis enhances BHR by enhancing LTC\(_4\) production, while the presence of allergic rhinitis did not affect LTB\(_4\) production in patients with atopic asthma.

Key words: asthma, allergic rhinitis, leukotriene generation, bronchial hyperresponsiveness
Asthma and allergic rhinitis

Introduction

The incidence of allergic diseases such as allergic rhinitis and asthma is increasing to epidemic proportions (allergic rhinitis: 10-50%; and asthma: 5-15%), both in the developed and the developing world, with a reduced quality of life of the patients, lower productivity and increasing medical costs. The increasing evidence on the links between allergic rhinitis and asthma comes from epidemiological, immunological and clinical studies. Epidemiologically, up to 40% of patients with allergic rhinitis also have asthma, and up to 80% of patients with asthma experience nasal symptoms. Rhinitis frequently precedes asthma, and treating allergic rhinitis has beneficial effects on asthma, suggesting upper airway disease is a risk factor for asthma.

Both allergic rhinitis and asthma are inflammatory diseases, and their inflammatory mechanisms are similar in that they are characterized by an inflammatory infiltrate made up of eosinophils, T cells, and mast cells that release several mediators including leukotrienes (LTs), chemokines and cytokines, local and systemic immunoglobulin (Ig) E synthesis. A typical early phase and late phase response are also common to both rhinitis and asthma. LTs are potent proinflammatory mediators that participate in the pathophysiological changes in the airways of patients with asthma.

In previous studies, we have shown that LTC₄ production by leukocytes is associated with IgE-mediated allergy and exacerbation of asthma; that generation of LTB₄ is closely related to bronchial hyperresponsiveness (BHR) in patients with asthma; and that cigarette smoking enhances production of IgE antibodies, BHR and generation of LTB₄ by leukocytes in elderly asthmatics.

The aim of the present study was to investigate the influence of allergic rhinitis on serum IgE level, leukotriene generation by peripheral leukocytes, and BHR in patients with atopic asthma.

Subjects and Methods

Subjects

Seventy-one asthmatic subjects (mean age, 59.5 ± 12.5 years; 37 women, 34 men) were recruited from Misasa Medical Center. Asthma was diagnosed according to the definition proposed by the American Thoracic Society. All subjects had specific IgE antibodies against inhalant allergens. All subjects were life-long non-smokers, and stable, with no changes in asthma symptoms or medication for at least 1 month, except for the use of short-acting B2 agonists. Nine of the 71 patients were being administered a long-term systemic glucocorticoid regimen, and had been treated with glucocorticoids for more than 2 years. No patients were treated with LT modulators or nasal steroids. Allergic rhinitis was diagnosed on the basis of clinical history, symptom and the presence of specific IgE antibodies. Serum IgE was measured using a radioimmunosorbent test (RIST), and IgE antibodies specific to 12 common Aeroallergens including house dust mites, moulds, pollens and animal danders were measured using the Pharmacia CAP system (Pharmacia Diagnostics AB, Uppsala, Sweden).

Informed consent was obtained from all subjects, and the study protocol was approved by the ethics committee of our institution.

Bronchial Responsiveness

Bronchial responsiveness to methacholine was measured using an Astograph (TCK6100, Chest Co). Different concentrations of methacholine (49, 98, 195, 390, 781, 1563, 3125, 6250 and...
12 500 μg/ml) were prepared, and were used for bronchial challenge according to the method used by Chai et al. 9).

The increase in total respiratory resistance (Rrs) after methacholine inhalation was measured using the oscillation technique. A cumulative dose of methacholine that caused a significant increase in Rrs was assessed as the minimum dose (Dmin). The units for Dmin are equivalent to 1 min of aerosol inhalation at 1 mg/mL during quiet tidal breathing. All medications were stopped 12 hours prior to examination.

LEUKOTRIENE (L, C) GENERATION

The amount of leukotrienes, LTB₄ and LTC₄, generated by peripheral leukocytes was assessed as described previously. 6, 7, 10, 11. First, 5 ml of 6% dextran (molecular weight, ~200,000 kDa) (Nacalai Tesque Inc., Kyoto, Japan) was added to 20 mL of heparinized peripheral blood, and the resultant mixture was incubated for 1 hour at room temperature. The leukocyte-rich plasma supernatant was then removed and used. The number of cells was adjusted to 5x10⁶ cells/mL in Tris CM buffer (30 mM Trisma [pH 7.7], 120 mmol/L NaCl, 5 mmol/L KCl, 1 mmol/L CaCl₂, 0.5 mmol/L MgCl₂), and the cells were then incubated with 1 mg of the calcium ionophore A23187 (Sigma, St Louis, MO) for 15 minutes at 37°C. After a 4x volume of prechilled ethanol (final, 80% ethanol) was added, the mixture was centrifuged at 3000 rpm for 30 minutes. A syringe filter (Toyo Roshi Co., Tokyo, Japan) was used to draw off the supernatant, and the filtrate was decompressed and dried to a solid. Quantification of LTB₄ and LTC₄ was performed using high-performance liquid chromatography (HPLC) and ultraviolet (UV) spectroscopy, following the method of Lam et al. 12. Quantities of LTB₄ and LTC₄ were expressed as nanograms per 5x10⁶ cells. PULMONARY FUNCTION TESTS

Pulmonary function tests were performed using a CHESTAC 33 system (Chest Co., Tokyo, Japan). For all subjects, the following measurements were made using the forced vital capacity (FVC) maneuver: FVC, forced expiratory volume in 1 second (FEV₁), FEV₁/FVC, mean forced expiratory flow during the middle half of the FVC (FEF₂₅-₇₅). Measurements of FVC, FEV₁, and FEF₂₅-₇₅ for each patient were expressed as a percentage of the predicted values.

STATISTICAL ANALYSIS

All statistical analyses were performed using Stat View software (SAS Institute Inc., Cary, NC, USA). Results were expressed as mean ± SD. The differences between groups were judged with the unpaired t test or the Mann-Whitney U test for continuous data, and with chi-square tests for categorical data. A p value of <0.05 was considered to indicate statistical significance.

Results

The clinical characteristics of 48 asthmatics with allergic rhinitis and 23 asthmatics without allergic rhinitis are presented in Table 1. The dosage of medication did not differ between the asthmatic groups. There was no significant difference between those with and without allergic rhinitis in patient age, %FVC, %FEV₁, FEF₂₅-₇₅ or FEV₁/FVC. The geometric mean of serum IgE level was 299 IU/ml in those with allergic rhinitis, and 183 IU/ml in those without allergic rhinitis. However, there was no significant difference between the asthmatic groups.
Asthma and allergic rhinitis

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>AR(-)</th>
<th>AR(+)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>23</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Gender (Male/Female)</td>
<td>11/12</td>
<td>26/22</td>
<td>NS</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>62.0 ± 10.9</td>
<td>58.3 ± 12.2</td>
<td>NS</td>
</tr>
<tr>
<td>Serum IgE (IU/ml) *</td>
<td>183 (6-2250)</td>
<td>299 (20-2916)</td>
<td>NS</td>
</tr>
<tr>
<td>%FVC (%)</td>
<td>102.5±21.2</td>
<td>102.5±16.3</td>
<td>NS</td>
</tr>
<tr>
<td>%FEV1 (%)</td>
<td>90.4±23.9</td>
<td>90.6±32.6</td>
<td>NS</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>67.9±11.4</td>
<td>69.3±12.2</td>
<td>NS</td>
</tr>
<tr>
<td>%FEF25-75 (%)</td>
<td>64.3±33.2</td>
<td>60.1±30.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

Medication

<table>
<thead>
<tr>
<th></th>
<th>Inhaled BDP</th>
<th>Systemic corticosteroids (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/day)</td>
<td>365±344</td>
<td>465±676</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD.

*: Values are geometric means of serum IgE levels, with range shown in parentheses.

AR = allergic rhinitis; FVC = forced vital capacity; FEV1 = forced expiratory volume in one second; FEF25-75 = mean forced expiratory flow during the middle half of the FVC; BDP = beclomethasone dipropionate.

Figure 1 shows the comparison of BHR to methacholine between atopic asthmatics with and without allergic rhinitis. The log_{10} (Dmin) was -0.172 ± 0.568 in asthmatics with allergic rhinitis and 0.290 ± 0.540 in asthmatics without allergic rhinitis. The log_{10} (Dmin) was significantly lower for those with allergic rhinitis than those without allergic rhinitis (p<0.05), implying that those with allergic rhinitis developed BHR to a greater degree than those without allergic rhinitis.

Figure 2 and 3 show the influence of allergic rhinitis on the generation of LTB4 and LTC4 from peripheral leukocytes in patients with atopic asthma by stimulation with the calcium ionophore A23187. The amount of LTB4 generated by the leukocytes was 95.7 ± 23.9 ng/5x10^6 cells in asthmatics with allergic rhinitis and 88.2 ± 31.2 ng/5x10^6 cells in asthmatics without allergic rhinitis. No significant differences were found between the asthmatic groups (Figure 2). The amount of LTC4 generated by the leukocytes was 80.5 ± 58.2 ng/5x10^6 cells.
Asthma and allergic rhinitis occur frequently, are very often associated and both cause a high rate of morbidity. A recent epidemiological study of risk factors for rhinitis and asthma established that although rhinitis was a risk factor for the onset of asthma, asthma was not a risk factor for the onset of rhinitis, which suggested that in reality rhinitis precedes asthma. Cys-LTs are important mediators in the pathophysiology of both asthma and allergic rhinitis, released in both the early and late phase of the allergic reaction, and in many ways underpin the 'one airway' concept of upper and lower airway disease. Leukotriene receptor antagonists (LTRAs), which inhibit the actions of cys-LTs, have proved to be effective and well tolerated therapies in the treatment of asthma and more recently rhinitis. It is also well established that nonspecific BHR to methacholine is more frequent in rhinitic patients as compared to nonrhinitic subjects, independently of the presence of atopy. In the present study, we examined how the presence of allergic rhinitis influences serum IgE level, BHR, and leukotriene production by peripheral leukocytes stimulated by calcium ionophore A23187, which reflects the pathogenesis of asthma, in patients with atopic asthma.

In the present study, BHR and generation of LTC4 by peripheral leukocytes were significantly greater for atopic asthmatics with allergic rhinitis than those without allergic rhinitis. In contrast, the amount of LTB4 produced from peripheral leukocytes did not significantly differ between asthmatic patients with and without allergic rhinitis. These results suggest that the presence of allergic rhinitis enhances BHR by enhancing LTC4 production, while the presence of allergic rhinitis did not affect LTB4 production in patients with atopic asthma.

Leukotrienes are lipid mediators generated by metabolism of arachidonic acid. They fall into 2 classes: Cys-LTs such as LTC4, LTD4, LTE4, which induce bronchoconstriction, enhance BHR and smooth muscle hypertrophy, cause mucus hypersecretion and mucosal edema, and induce influx of eosinophils into airway tissue; and the dihydroxy acids such as LTB4, which are neutrophil chemoattractants. The findings of Fujimura et al. indicate that interleukin-8 induces BHR and airway neutrophil accumulation in guinea pigs in vivo, and suggest that this effect is partly mediated by the release of LTB4.

Factors mechanistically linking upper and lower airway allergic inflammation include loss of nasal protection secondary to rhinitis-induced congestion and nasal-bronchial reflex. Allergen-specific IgE production is strongly
correlated with both allergic rhinitis and asthma, suggesting allergic immune responses are important in their etiology and pathogenesis\(^25,26\). The inflammatory processes arise from inappropriate immune responses to otherwise innocuous aeroallergens resulting in development of an allergic immune, instead of a tolerant phenotype. Several studies have emphasized the importance of Th2-type T cells in the development and propagation of this response\(^27,28\). Active inflammatory conditions in the nasosinus may result in BHR through the cholinergic nervous system induced by the direct stimulation of receptors in the nasosinus and/or indirect stimulation of receptors in the nasopharynx from inflammatory cells or products of post-nasal discharge\(^29\). This nasobronchial reflex may in turn influence the pathophysiology of bronchial asthma, such as bronchial muscle tone\(^30\).

In conclusion, the present results suggest that BHR and LTC\(_4\) generation by peripheral leukocytes are influenced by co-existing allergic rhinitis. However, the mechanism leading to BHR is complex and remains unclear, and is influenced not only by airway remodeling\(^31\). Thus, there is a need for further detailed clinical studies to elucidate the relation between asthma and allergic rhinitis.

References

11. Mitsunobu F, Mifune T, Hosaki Y, et al. :


