24R,25dihydroxyvitaminD₃による骨形成促進作用
— Hyp マウスにおける検討 —

岡山大学医学部小児科学教室（指導：清野佳紀教授）

山 手 智 夫

（平成 4年11月9日受稿）

Key words: 24R,25-dihydroxyvitaminD₃, Hyp mouse, くる病, 骨形成

緒 言

24R,25(OH)₂D₃はビタミンDの単なる不活性型代謝物であるという考えがある一方で、近年、24R,25(OH)₂D₃には、特に軟骨、骨に対して独自の作用があるという報告が多数出されている。軟骨に24R,25(OH)₂D₃と特異的に結合するレセプターを有する11)をはじめ、軟骨細胞を活性化するという報告23)31)、軟骨細胞の分化を促進するという報告31)などがある。また、24R,25(OH)₂D₃が骨形成を促進することを示した報告も多数ある31)13)。しかし、in vivoの実験で、大量に投与しても高Ca血症を起こすことなくその骨形成作用を出現させていることは非常に興味深い23)31)。一方、Hyp マウスは低インリン血症性ビタミンD抵抗性を有する病のモデルである31)。低インリン血症、高ALP血症が認められ、病理組織学的にくる病、骨軟化症の所見が認められる。清野らは、本マウスではVitamin Dの代謝が亢進していることを発見した31)。その後、その原因は腎において、24-hydroxylaseの活性が亢進していることであるということが判明した31)19)。従って、24R,25(OH)₂D₃がHyp マウスにおいて生理性役割を担っている可能性もあるのではないかと考えた。そこで、成長期のHyp マウスに24R,25(OH)₂D₃を投与して、その骨形成作用を観察した。また、活性型ビタミンDである1α,25(OH)₂D₃の投与も同時に行い、24R,25(OH)₂D₃の作用と比較検討した。

材 料 と 道 法

岡山大学小児科学教室で繁殖、維持されている生後4週齢のHyp マウス82匹、controlとして日本SLCより購入した。4週齢の正常マウス（C57BL/6J(+/Y)）62匹を使用した。マウスは数匹ずつ、plastic cageに入れ、12hour/12hour light and dark cycleの環境のもとで飼育した。飼料はオリエンタル酵母社製の飼育用MF（カルシウム1.2％、リン0.91％、ビタミンD80IU/100g）を使用した。実験期間中、すべてのマウスに飲料水をad libitumで与えた。24R,25(OH)₂D₃および1α,25(OH)₂D₃は呉羽化学工業生物医学研究所から供与を受けた。

各々のマウスを5～12匹ずつ10群に分け、それぞれ、vehicle, 24R,25(OH)₂D₃; 1, 10, 100, 1000, 10000 μg/kg/day, 1α,25(OH)₂D₃; 0.01, 0.1, 1, 10 μg/kg/dayを28日間連日腹腔内投与した。vehicleは0.75％ethanol, 0.1％Tween 80で、投与量は0.1mlとした。投与期間中毎日、マウスの体重を測定した。投与終了後マウスを脱血させ、血液Ca, P, CRTN, ALPを測定した。血液Caはキレート発色法（OCPC法）、血液Pはp-methylaminophenol 酶元法、血液CRTNはJaffe 法で、すべて和光純薬工業社製のキットを用いて測定した（kit codeはそれぞれ、272—21801, 270—49801, 277—10501）。ALP活性はBessey-Lowry 法に準じて測定した。また、マウスの脛骨および大腿骨を摘出し、micrometerで長さの測定を行った後、脛骨を直接フィルム上に置き、25kV, 20mA, 2

55
min の条件で軟 X 線撮影を行った。次に脛骨を 70% ethanol で固定し、Villanueva 染色を施した後、methyl methacrylate の中に封じ、Reichert Jung microtome（Model 2050）にて 5 μm の縦方向の連続切片を作成し、それに Goldner 染色を施した。できたVillanueva-Goldner 染色非脱灰薄片標本を光学顕微鏡にて観察した。一方、大腿骨を acetone にて 7 日間脱脂した後、vacuum dryer にて overnight dry up し、その後重量を測定した。次に、大腿骨を電気炉で 600℃、48時間焼熱し、灰分とした後、その重量を測定した。さらに得られた灰分を 3 N HCl に溶解し、Ca, P, Mg の濃度をそれぞれ OCPC 法、Fiske and Subbarow 法、xylydylblue 法にて測定し、灰分中の重量を求めた。なお Mg の濃度は和光純薬工業製のキット（kit code; 274-83901）を用いて測定した。得られたデータはすべて mean±SEM で表し、統計処理は one-way ANOVA を用いて行った。

結 果
実験中に死亡したマウスは、Hyp マウス 3 匹、正常マウス 1 匹で、すべて異なる投与群のものであった。また、1α,25(OH)2D3 の 1 μg/kg/day、10 μg/kg/day 投与群では Hyp、正常マウスとも 2 週間で灌死の状態となったため、実験を中止して脱血、処置した。Hyp マウスでは 24R,25(OH)2D3 投与群で、用量依存性に 1 μg/kg/day から 1000 μg/kg/day 投与まで体重増加率、体重増加量ともに增加する傾向が認められた。正常マウスではこの傾向は認められなかった。一方、1α,25(OH)2D3 を 0.1 μg/kg/day 投与した Hyp マウスでは、体重増加は vehicle 投与群よりも少なかった。さらに、1α,25(OH)2D3 の 1 μg/kg/day、10 μg/kg/day 投与群は、Hyp、正常マウスとも体重の減少が認められた。

Hyp マウスにおいて、24R,25(OH)2D3 の 10000 μg/kg/day 投与群では、血清 Ca は 12.5±1.0 mg/dl（mean±SEM）と高値を示したが、1000 μg/kg/day 以下の投与群では、高 Ca 血症は認められなかった。一方、1α,25(OH)2D3 の 1 μg/kg/day、10 μg/kg/day 投与群ではそれぞれ 12.0±0.4、14.3±1.2 mg/dl（mean±SEM）と高 Ca 血症が認められた。正常マウスでは、24R,25(OH)2D3 の 10000 μg/kg/day 投与群、1α,25(OH)2D3 の 0.1 μg/kg/day、1 μg/kg/day、10 μg/kg/day 投与群でそれぞれ、13.7±0.8、11.3±0.5、15.2±0.4、17.2±0.4 mg/dl（mean±SEM）と高 Ca 血症を認めた（表 1）。また、高 Ca 血症を認めた群では血清 CRTN も高かった。

Hyp マウスでは、血清 P 価は、24R,25(OH)2D3、1α,25(OH)2D3 のすべての投与群で上昇が認められた（表 1）。

Hyp マウスでは、ALP 活性は、68.9±4.2 PNPμmol/30min/ml（mean±SEM）と正常マウス（26.4±1.5 PNPμmol/30min/ml）に比べて上昇していた。24R,25(OH)2D3 の 1000 μg/kg/day、10000 μg/kg/day 投与群において、1%以下の有意差を示す（それぞれ 43.7±2.3、45.2±4.9 PNPμmol/30min/ml、mean±SEM）を認めたが正常マウスのレベルまでには低下していなかった。正常マウスでは、ALP 活性は 24R,25(OH)2D3 の 10000 μg/kg/day、1α,25(OH)2D3 の 1 μg/kg/day、10 μg/kg/day 投与群で逆に有意な上昇を認めた（それぞれ、32.6±0.7、33.6±0.8、36.6±2.0 PNPμmol/30min/ml、mean±SEM）。

実験終了時、摘出し大腸骨の接写を図 1 に示す。Hyp マウスにおいて、24R,25(OH)2D3 投与群では、用量依存性に骨長の増加が認められた。1α,25(OH)2D3 の 0.1 μg/kg/day 投与群でも 24R,25(OH)2D3 の 1000 μg/kg/day 投与群として同程度の骨長の増加が認められた。骨長の増加は脛骨でも同様に認められた（表 2）。一方、1α,25(OH)2D3 の 1 μg/kg/day、10 μg/kg/day 投与群では骨吸収が著しく、破壊せずに骨を取り出すことが

図 1 Hyp マウスおよび正常 (C57BL/6J) マウス vehicle 投与群の大腸骨
表1 血清CaおよびP値（mg/dl）

<table>
<thead>
<tr>
<th></th>
<th>24R,25D₃（µg/kg/day）</th>
<th>1α,25D₃（µg/kg/day）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>7.0</td>
<td>6.2</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.3)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>P (mg/dl)</td>
<td>5.0</td>
<td>7.2*</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.2)</td>
<td>(1.1)</td>
</tr>
</tbody>
</table>

mean±SEM *: p<0.05 **: p<0.01 ***: p<0.001 (VS vehicle群)

<table>
<thead>
<tr>
<th></th>
<th>24R,25D₃（µg/kg/day）</th>
<th>1α,25D₃（µg/kg/day）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Vehicle</td>
<td>9.1</td>
<td>8.7</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(1.6)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>P (mg/dl)</td>
<td>12.2</td>
<td>11.3</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(1.3)</td>
<td>(1.0)</td>
</tr>
</tbody>
</table>

mean±SEM *: p<0.05 **: p<0.01 ***: p<0.001 (VS vehicle群)

表2 Hypマウスおよび正常（C57BL/6J）マウス vehicle投与群の大腿骨および脇骨長

<table>
<thead>
<tr>
<th></th>
<th>24R,25D₃（µg/kg/day）</th>
<th>1α,25D₃（µg/kg/day）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mm)</td>
<td>14.89***</td>
<td>10.15</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.14)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mm)</td>
<td>17.58***</td>
<td>11.94</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.07)</td>
<td>(0.23)</td>
</tr>
</tbody>
</table>

mean±SEM *: p<0.05 **: p<0.01 ***: p<0.001 (VS Hyp-vehicle群)

できなかった。

以上の結果より、24R,25(OH)₂D₃である1000µg/kg/day、1α,25(OH)₂D₃では0.1µg/kg/dayの投与量は、高Ca血症を起こすことなく、Hypマウスの骨長を増加させたという効果において等価と考えられたので、以下の2つの投与群を中心に解析した。

脛骨の軟X線像の結果、Hypマウスの脛骨近位端の陰影は、1α,25(OH)₂D₃の0.1µg/kg/day投与群とvehicle投与群の間に著明な差は認められなかったが、24R,25(OH)₂D₃の1000µg/kg/day投与群では、vehicle投与群に比較して骨端部の陰影が強く出ており、同部の石灰化の促進がうかがわれた。
図2 Hypマウス（vehicle, 24R,25(OH)D₃の1000μg/kg/day, 1α, 25(OH)D₃の0.1μg/kg/day投与群）および正常C57BL/6Jマウスvehicle投与群の髄骨近位端Villanueva-Goldner染色非脱灰薄切標本

<table>
<thead>
<tr>
<th>正常マウス</th>
<th>Hypマウス（vehicle）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypマウス (24R,25D₃)</td>
<td>1000μg/kg/day</td>
</tr>
<tr>
<td>Hypマウス (1α,25D₃)</td>
<td>0.1μg/kg/day</td>
</tr>
</tbody>
</table>
表3：Hypマウスおよび正常（C57BL/6J）マウス vehicle投与群の大腿骨の乾燥重量（Dry Bone Weight），
灰分量（Ash），灰分量の乾燥重量に対する比（Ash/Dry Bone Weight），Ca, P, Mg, Ca/P比

<table>
<thead>
<tr>
<th></th>
<th>C57BLマウス</th>
<th></th>
<th>Hypマウス</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle</td>
<td>Vehicle</td>
<td>24R,25D₃ (μg/kg/day)</td>
<td>1α,25D₃ (μg/kg/day)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>10³</td>
<td>10⁴</td>
</tr>
<tr>
<td>Dry Bone Weight (mg)</td>
<td>38.9***</td>
<td>19.3</td>
<td>21.1</td>
<td>22.8</td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>(2.2)</td>
<td>(1.5)</td>
<td>(0.7)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>Ash (mg)</td>
<td>22.6***</td>
<td>8.6</td>
<td>9.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(0.7)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Ash/Dry Bone Weight (%)</td>
<td>53.3***</td>
<td>44.0</td>
<td>43.1</td>
<td>45.0</td>
</tr>
<tr>
<td>Bone Ca Content (mg)</td>
<td>(0.41)</td>
<td>(0.28)</td>
<td>(0.11)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Bone P Content (mg)</td>
<td>(0.23)</td>
<td>(0.15)</td>
<td>(0.06)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Bone Mg Content (mg)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Ca/P</td>
<td>1.90**</td>
<td>1.54</td>
<td>1.76</td>
<td>1.78</td>
</tr>
</tbody>
</table>

(mean±SEM *: p<0.05 **: p<0.01 ***: p<0.001 (VS Hyp-vehicle群))

のCa, P, Mg量はいずれも、24R,25(OH)₂D₃の1000μg/kg/day, 10000μg/kg/day 投与群,
1α,25(OH)₂D₃の0.1μg/kg/day 投与群において増加していた。しかし、24R,25(OH)₂D₃投与群の方が1α,25(OH)₂D₃投与群よりその増加量は明らかに大きかった。一方、灰分中のCa/P比は上の3群で同程度に改善していた（表3）。

考 察

今回、24R,25(OH)₂D₃の特異的な作用を観察するために、ヒト低リン血症性ビタミンD抵抗性のモデルであるHypマウスに、1μg/kg/day〜10000μg/kg/day の24R,25(OH)₂D₃を投与した。その結果、24R,25(OH)₂D₃は1μg/kg/dayから1000μg/kg/day投与まで、高Ca血症を惹起することなく、用量依存性にHypマウスの体重、骨サイズの増加、ALP活性の低下、骨形成および骨石灰化の促進が認められたが、24R,25(OH)₂D₃の1000μg/kg/day投与時と比較して骨灰分量の有意な増加、ALP活性の有意な低下は認められず、体重の増加はvehicle群よりも少なかった。すなわち、1α,25(OH)₂D₃投与群では、骨形成および骨石灰化の促進が認められたが、24R,25(OH)₂D₃投与群を比較して骨吸収が著明に促進された。この事実も、24R,25(OH)₂D₃の作用が単に1α,25(OH)₂D₃のレセプターを介した1α,25(OH)₂D₃類似のものではないということを
示唆している。24R,25(OH)₂D₃が、その独自のレセプター、あるいは1α,25(OH)₂D₃のレセプターを介して軟骨細胞、骨細胞の24,25-VDR複合のレスポンスエレメントに作用して、骨形成を起こさせずに骨形成作用を発現させたと考えることも可能である。

GlorieuxらはHypマウスに、24R,25(OH)₂D₃をリンと同時に投与しても骨石灰化の改善は認められなかったと報告している。しかし、この時の24R,25(OH)₂D₃投与量は0.5μg/kg/dayと、われわれが検討した量に比べてわずかである。中村らは、6週齢の正常ラットに500μg/kg/dayの24R,25(OH)₂D₃を2年間連日経口投与したところ、骨塩量、骨密度を増加させ、骨の機械的刺激に対する強度が増したことを報告した。24R,25(OH)₂D₃には骨形成作用があるとしている。今回、正常マウスでは24R,25(OH)₂D₃の骨形成作用は明確ではなかった。その理由は24R,25(OH)₂D₃の投与期間が短かったことによるのかも知れない。

結論

24R,25(OH)₂D₃は、単にレセプターへの親和性によって説明できる1α,25(OH)₂D₃類似の作用だけでなく、独自の機序による骨形成作用を有していることが推察された。

参考文献

9) Tam CS, Heersche JNM, Jones G, Murray TM and Rasmussen H: The effect of vitamin D on bone
The bone forming ability of 24R, 25 dihydroxyvitamin D₃ in hypophosphatemic mice

Tomoo YAMATE
Department of Pediatrics,
Okayama University Medical School,
Okayama 700, Japan
(Director : Prof. Y. Seino)

The biological role of 24R, 25(OH)₂D₃ is still controversial, although 24R, 25(OH)₂D₃ has been reported to have peculiar effects particularly on the bone. To examine the biological effects of 24R, 25(OH)₂D₃, we administered Hyp mouse, which is a model for familial X-linked hypophosphatemic rickets in man, 1-10000μg/kg/day of 24R, 25(OH)₂D₃ or 0.01-10μg/kg/day of 1α, 25(OH)₂D₃ for 28 successive days by intraperitoneal injection.

24R, 25(OH)₂D₃ increased the body weight gain, bone size, bone formation and mineralization and reduced the serum alkaline-phosphatase activity, dose-dependently from 1 to 1000μg/kg/day without hypercalcemia.

Severe bone resorption and hypercalcemia were caused by 1 and 10μg/kg/day of 1α, 25(OH)₂D₃, which are considered to be equivalent to 1000μg/kg/day of 24R, 25(OH)₂D₃ in the affinity to the receptor of 1α, 25(OH)₂D₃. On the other hand, 0.1μg/kg/day of 1α, 25(OH)₂D₃ increased bone size, bone formation and mineralization to a similar degree as 1000μg/kg/day of 24R, 25(OH)₂D₃, but did not increase body weight gain, dry bone weight or bone mineral contents, did not reduce serum alkaline-phosphatase activity. At 0.1μg/kg/day, 1α, 25(OH)₂D₃ increased not only bone formation and mineralization but also bone resorption on Hyp mice.

These findings suggest that 24R, 25(OH)₂D₃ has peculiar biological effects on Hyp mouse rather than merely mimicking that of 1α, 25(OH)₂D₃ mediated by its receptor.