Studies on the biological properties of *Beet necrotic yellow vein virus* RNA4
(*Beet necrotic yellow vein virus* RNA4 の生物学的機能に関する研究)

学位論文内容の要旨

Beet necrotic yellow vein virus (BNYVV, *Benyvirus*) causes rhizomania disease of sugar beet and is transmitted by the soil-inhabiting fungus *Polymyxa betae*. BNYVV has a multipartite positive-sense RNA genome, which consists generally of four, or in some isolates, of five distinct RNA species. RNA1 and RNA2 encode "house-keeping" genes involved in viral RNA replication, assembly, and cell-to-cell movement, whereas RNA3, RNA4 and RNA5 are associated with vector-mediated infection and disease development in sugar beet roots. The aim of this study is to examine the effects of RNA4-encoded p31 on fungus transmission, symptom expression and silencing suppression.

The presence of RNA4-encoded p31 in the inoculum sources resulted in about 100 times more efficient transmissibility by *P. betae* than when the inoculum sources contained mutated RNA4 or no RNA4. Thus, the p31 protein was required for efficient transmission, whereas, in contrast, efficient transmission did not require the presence of RNA3. BNYVV RNA3-encoded p25 was responsible for rhizomania symptoms in sugar beet, while RNA4-encoded p31 was involved in slight enhancement of symptom expression in some *Beta* species. No effects of RNA4 on virus accumulation in infected tissue were observed. In addition, p31 was involved in the induction of severe symptoms by BNYVV in *Nicotiana benthamiana* plants without affecting viral RNA accumulation. In contrast, p25 had no such effect on *N. benthamiana*. In the patch co-infiltration assay, expression of either p31 or p25 failed to suppress RNA silencing in the infiltrated leaves. In the silencing reversal assay in which GFP-silenced plants were inoculated with BNYVV, neither GFP fluorescence nor increase of GFP mRNA level was observed in the shoots. However, in the presence of RNA4, obvious green fluorescence and increase of GFP mRNA levels were observed in the roots, whereas BNYVV lacking RNA4 gave much weaker green fluorescence and less GFP mRNA accumulation. These results indicated that RNA4-encoded p31 is able to contribute to suppression of RNA silencing in the roots, but not in leaves.

In conclusion, this study shows that BNYVV p31 plays a multifunctional role in efficient fungal transmission, enhanced symptom expression and root-specific silencing suppression.
論文審査結果の要旨

Beet necrotic yellow vein virus (BNYVV: *Benyvirus*属)は、テンサイそう根病の病原ウイルスであり、土壌菌*Polymyxa betae*によって伝搬される。BNYVVは5種の分節RNAゲノムをもつ。RNA1とRNA2は複製、粒子形成、細胞間移行に必須であり、RNA3およびRNA5は病徵発現に必要である。RNA4は菌伝搬性に関与することを除いて、詳細な機能については不明である。そのため本研究はRNA4に焦点をあてて解析を行ったものである。RNA4にはp31のORFが存在する。このp31に人為的変異を導入し、RNA3と比較しながら解析を行った。その結果、野生型p31をもつウイルスは、変異型p31をもつウイルスと比べて100倍以上の伝搬効率を示した。一方、RNA3のコードするp25はテンサイのそう根症状の発現に必須であり、*Beta*属植物に強い病原性を示すことが知られているが、さらにp31の存在により病徵が強化されることが判明した。またp31は*Nicotiana benthamiana*における強いモザイク症状の発現に関与していた。GFP発現植物を用いて、p25とp31のRNAサイレンシング抑制効果を調べた結果、どちらの遺伝子も局所的サイレンシングを抑制できなかった。しかし、GFPサイレンシング植物にウイルスを接種したところ、p31は根特異的にトランスジェンのサイレンシング抑制に貢献していることが明らかとなった。

以上のように、本研究はBNYVV RNA4が多機能をもった遺伝子であり、BNYVVの生存上必須であることを証明したものである。ウイルス学上多くの新知見が得られている。よって本論文は博士（農学）の学位に値すると判定した。