学位論文内容の要旨

【緒言】

チタンは生体親和性が高いことから、インプラントや金属アレルギー患者への補綴物に用いられている。また、安価であるため貴金属材料に変わる新たな金属材料のとして期待されている。しかしながら、チタンへの接着特性に関してはいまだ断片的にしか報告されておらず、現行の接着システムの有用性についても十分検討されていない。そこで本研究では、チタン表面への効果的な接着技法を開発すべく、接着機能性モノマーあるいは酸にて前処理したチタン表面をX線光電子分光法（XPS）にて化学的に分析するとともに、処理法の違いが接着特性に及ぼす影響を引張り試験にて評価した。

【材料および方法】

1. 接着機能性モノマーによるチタン表面前処理が接着強さに及ぼす影響

純チタン（10×10×3 mm）をシリコンカーバイド研磨紙（#600）で研削後、エタノールにて5分間超音波洗浄を行ったものを無処理群（対照群）とした。

接着性機能性モノマーである10-Methacryloyloxyethyl Dihydrogen Phosphate（MDP）および4-methacryloyloxyethyl trimellitic acid（4-META）をそれぞれ0.1、1、10wt%の濃度で50%エタノールに溶解したものを試作プライマーとした。チタン表面をそれぞれの試作プライマーにて前処理後、スーパーボンドC&B（サンメディカル）およびバナビア®フルオロセメント（クラレ）にて直径7 mmのステンレス棒を接着し、24時間37℃水中に浸漬した後、引張り試験を行った。

2. 酸によるチタン表面前処理による接着面性状および接着強さに及ぼす影響

1）表面化学分析：無処理、1N塩酸5分間浸漬、および37%リン酸5分間浸漬の3条件にて処理したチタン表面の化学的性状をXPS（Kratos社製）にて分析した。さらに無処理および1N塩酸処理後の試料を15wt%MDP（エタノール45%、水40%）溶液に室温にて2時間浸漬した後、57.1wt%エタノール溶液で10分間超音波洗浄し、塩酸処理の有無がMDPの吸着状態に及ぼす影響を検討した。

2）接着強さ：純チタン（10×10×3 mm）をシリコンカーバイド研磨紙（#600）で研削後、エタノールにて5分間超音波洗浄を行った後、無処理、0.1、1N塩酸に5分間浸漬、あるいは37%リン酸に5分間浸漬処理を行ったチタンに、ステンレス棒をバナビア®フルオロセメントで接着した。24時間37℃水中浸漬後、5℃と55℃水中に各1分浸漬するサマルサイクルを20,000回行った後、引張り接着試験を行い、熱負荷処理前後の引っ張り接着強さを比較検討した。測定値は、二元配置分散分析およびScheffe法を用いて有意水準5%にて有意差検定を行った。
3）表面粗さ：無処理、0.1、1 N塩酸に5分間浸漬、あるいは37％リン酸に5分間浸漬処理を行ったチタンの表面粗さを、表面粗さ測定装置（金剛測機）で測定した。

【結果および考察】

1．接着機能性モノマーによるチタン表面処理の影響

バナビア®フルオロセメントにおいて、MDP 含有プライマーでは浸漬時間依存して接着強さが有意に高くなったが、4-META 含有プライマーでは対照群の無処理チタンと比較して有意差は認められなかった。これに対し、スーパーポンド C&B においては MDP 含有プライマー群が高い接着強さを示ず傾向にあったが、4-META 含有プライマー群に比べて有意差が認められなかった。これはバナビア®フルオロセメントはすべての条件で混合破壊であったのに対し、スーパーポンドにおいてはセメント内の凝集破壊であり、チタンとスーパーポンド界面の接着強さを直接反映していないことによるものと考えられる。これらの結果から、以降の実験では処理法の効果をより明確に検討するため、バナビア®フルオロセメントと MDP を使用した。

2．酸によるチタン表面処理の影響

XPS 測定の結果、塩酸処理後のチタン表面は酸洗チタンに類する Ti₄⁺が減少し、Ti metal が増加していた。これに対し、リン酸処理後のチタン表面にはリン酸自体が吸着していた。また、MDP 処理後のチタン表面には、P のピークが認められ、MDP がチタン表面に化学的に結合していることが示唆された。さらに、塩酸処理後のチタン表面には、コントロールと比較してより多くの MDP が化学吸着していた。

引張り試験の結果、1 N 以上の濃度の塩酸処理により、サーマルサイクル 20,000 回後の平均接着強さ（9.1 ± 2.4 MPa）はコントロール（2.4 ± 2.7 MPa）に比べて有意に高い値となり、表面分析の結果を裏付けるものとなった。

SEM 観察の結果、塩酸の濃度が高くなるにしたがって、表面の汚れが取れ除かれていく傾向が認められた。一方、表面粗さ測定の結果、無処理（対照群）、塩酸処理群、リン酸処理群のすべてにおいて平均表面粗さに有意差は認められなかった。

【結論】

チタン表面をある濃度以上の塩酸で処理することにより、表面粗さの変化は認められなかったが、MDP に対してより反応性の高い被着面に改質され、チタンと接着性レジンセメントの接着強度が向上することが示唆された。
論文審査の結果の要旨

チタンは生体親和性が高いことから、インプラントや金属アレルギー患者への補綴物に用いられている。しかしながら、チタンへの接着性レジンセメントの接着特性に関してはいまだ断片的にしか報告されておらず、現行の接着システムの有用性についても十分検討されていない。

本研究では、チタン表面への効果的な接着技法を開発すべく、接着機能性モノマーあるいは、酸（塩酸）にて前処理する方法を開発している。また、その接着メカニズムを明らかにするためにチタン表面をX線光電子分光法（XPS）にて化学的に分析するとともに、処理法の違いが接着特性に及ぼす影響を引張り試験にて評価している。まず、接着機能性モノマーの効果を検討するために、MDPと4-METAを用いて引張り接着試験を行った。酸処理による効果の検討は、引張り接着試験だけでなく、XPSによるチタンの表面解析、SEM観察および表面粗さ測定など多面的に行われている。

その結果、1）バナジアフルオロセメントを用いた場合、MDP含有プライマー群は濃度依存的に接着強さが上昇した、2）リン酸エステル系モノマーであるMDPはチタン表面に化学的に結合した、3）チタン表面をある濃度以上の塩酸で処理することにより、MDPと反応性の高い被着面に改質され、チタンとリン酸エステル系接着性レジンセメントの接着耐久性が向上することが示唆された。

これらの知見は、口腔内におけるチタンの多様な応用が進む現在の歯科医療において非常に重要な知見である。また、実験計画および実験手技も適切であると判断された。よって、本論文は博士（歯学）の学位授与に十分値するものと判断した。