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Abstract 

Electronic structure of a single vortex (or vortex core structure) in type-II su­
perconductors is theoretically discussed in the present thesis. Low-lying excited 
states in the superconductors due to the vortex, i.e., "vortex bound states," 
are examined in detail on the basis of numerical calculations. Two points are 
focused on: the effect of superconducting gap anisotropy on a vortex (Chapter 
2) and the property of a vortex in quantum-limit situation (Chapter 3). 

The anisotropy of a superconducting energy gap has substantial effects on 
the structure of the vortex bound states. The local density of states around a 
vortex is calculated in a clean superconductor with the gap anisotropy within 
the framework of the quasiclassical theory of superconductivity. A characteristic 
structure of the local density of states, observed experimentally in the layered 
hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy (STM), 
is well reproduced by assuming an anisotropic s-wave gap. The local density 
of states (or the bound states) around a vortex in superconductors with gap 
anisotropy is interpreted in terms of quasiparticle trajectories to facilitate an 
understanding of the rich electronic structure observed in STM experiments. 
This reveals not only a rich internal electronic structure associated with a vortex 
core, but also unique ability of the STM spectroscopy. 

The quantum limit means that the superconducting coherence length is small 
in the limit, i.e., it is comparable to the atomic length order. Focusing on 
quantum-limit behavior, fundamental structure of a vortex is studied by self­
consistently solving the Bogoliubov-de Gennes equation. The discreteness of the 
energy levels of the vortex bound states is crucial for the vortex structure in the 
quantum limit. The following are revealed by the study of the quantum limit. 
The vortex core radius shrinks monotonically up to an atomic-scale length on 
lowering the temperature T, and the shrinkage stops to saturate at a lower T. 
The pair potential, supercurrent, and local density of states around the vortex 
exhibit Friedel-like oscillations. The local density of states inside a vortex core 
generally has particle-hole asymmetry induced by the existence of the vortex 
itself. 

Some essential properties of general vortices which are concealed within the 
conventional non-quantum-limit analysis can be extracted by the quantum-limit 
analysis. On the basis of the inherent particle-hole asymmetry inside vortex 
cores, it is discussed in this thesis that electric charging of a vortex core is orig­
inated from the Friedel oscillation of the Bogoliubov wave functions around the 
vortex (Chapter 4) . This mechanism of the vortex core charging is independent 
of the slope in the normal-state density of states at the Fermi level. The temper­
ature dependence of the vortex core charge is also presented. It is expected that 
by using STM, information on the vortex core charging is extracted through a 
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relation between the vortex core charge and the vortex bound states. 
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Chapter 1 

Introduction to Vortex 

In the present chapter, I shall give a brief introduction to vortices in type-II 
superconductors and mention . "vortex bound states" discussed in the following 
chapters. Open questions of the related experimental results will be pointed 
out. 

1.1 Type-II Superconductor and Vortex 

Superconductors under magnetic fields exhibit the so-called Meissner-Ochsenfeld 
efi"ect, that is, the magnetic fields applied to superconducting material are ex­
pelled from the inside of the material. Some superconductors, called "type I," 
exhibit a perfect Meissner-Ochsenfeld efi"ect up to a critical field He, and at this 
critical field the transition to the normal state suddenly takes place. In the 
other superconductors, called "type II," magnetic fields are expelled up to a 
lower critical field H c1 , and at an upper critical field Hc2 the superconductivity 
is broken. In the intermediate field region Hc1 < H < Hc2 , the magnetic field 
partly penetrates into the material keeping the superconductivity. The magnetic 
fields penetrate into the superconductors in the form of quantized flux lines. 
The quantized flux lines exhibit characteristic phenomena in type-II supercon­
ductors, and a system constituted of such flux lines has a variety of physical 
aspects. 

Around the flux line, the supercurrent circularly flows and a quantity which 
characterizes the superconductivity, i.e., the order parameter of superconduc­
tivity (a complex quantity), varies by 21m in its phase. (n is an integer.) The 
structure of such a flux line is called "vortex," and the superconducting state 
at Hc1 < H < Hc2 is called "vortex state" (and frequently called "mixed state" 
traditionally). In the present thesis, I will reveal the rich structure of individual 
vortex (or the structure of vortex core) in type-II superconductors. The essence 
of this study would provide implications for vortices in fermionic superfluid sys­
tems such as the superfluid 3He. Studies of vortices in superconductors under 
magnetic fields could also be important from the applied physics point of view 
in general. (For a historical review of the type-II superconductors, refer to Ref. 
[1] and Sec. 1 of Ref. [2] for example.) 
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1.2 Vortex Bound States 

The superconducting state is an ordered state with symmetry breaking. The su­
perconductivity is characterized by a quantity (i.e., the order parameter), (aa) , 
symbolically. Here a is the annihilation operator for the fermionic quasiparti­
cles and ( ) means the thermal average. In the superconducting state (aa) i= 0, 
and, on the other hand, (aa) = 0 in the normal state. Thus the U(l) gauge 
symmetry is broken in the superconducting state ((aa) i= 0). ((aa) is not U(l) 
gauge invariable. That is, (aa) -+ (aa) exp[2iB]( i= (aa)), when a -+ a exp[iB] and 
at -+ at exp[-iB].) Now, it is a crucial point that the modulus of that quantity, 
l(aa)l, determines an energy gap in the excitation spectrum of the supercon­
ducting state. Let us define the superconducting order parameter as 6. whose 
modulus 16.1 gives the magnitude of the energy gap due to superconductivity. 

When 6. has a spatial dependence in superconductors, what does take place 
there? The vortex state is one of the typical situations where 6. varies spatially 
in superconducting material. In analogy, let us consider a hetero junction in 
semiconductors. It is well known that when semiconductors with different en­
ergy gaps are joined each other, a quantum well is constituted there. Similarly, 
in superconductors, it is expected that if the superconducting gap 16.1 has a 
spatial dependence, a kind of the quantum well should be constituted and the 
quantized energy levels due to the well should appear there. Around a vortex, 
the phase of the order parameter 6. varies by 271' with a rotation about the 
vortex center; it means that one quantum flux penetrates there. When we take 
the z axis in the direction of the flux line in cylindrical coordinates r = (1', B, z), 
the order parameter 6. around a vortex is expressed as 6.(r) = 6.(1') exp[iB]. 
Because of the indeterminacy of the phase factor exp[iB] at the vortex center 
r = 0, the magnitude part becomes 6.(r = 0) = 0 inevitably. Thus the gap 
6.(1') is 6.(0) = 0 at the vortex center, and far from the vortex it recovers to 
the uniform value 6. CXJ ' This spatial structure of the energy gap gives rise to 
low-energy bound states below the gap around a vortex as in the quantum well 
systems. 

The existence of the low-energy bound states around a vortex was first dis­
cussed theoretically in 1964 by Caroli, de Gennes, and Matricon[3] . Energy 
spectra in spatially inhomogeneous superconductors can be obtained as the 
eigenenergy spectra of the Bogoliubov-de Gennes (BdG) equation[4] . The BdG 
equation corresponds to the Schrodinger equation for superconducting systems. 
Caroli et al.[3] applied the BdG equation to a vortex system. They solved 
the equation analytically by simplifying the problem. As a result, they found 
low-energy excited states bounded around the vortex. These bound states due 
to vortices are called "vortex bound states," or "Caroli-de Gennes-Matricon 
states," or rarely "chiral branch." The vortex bound states can have impor­
tant effects on the thermodynamics and transport in superconductors under 
magnetic fields. 

Theoretically, after .the seminal work by Caroli et al.[3], several theorists 
studied the electronic structure around vortices and its effects on physical phe­
nomena. Experimentally, nevertheless, there had existed for a long time no ex­
periments which could directly study the electronic structure around vortices[5]. 
In 1989, however, Hess et al.[6] first succeeded in experimentally observing 
the electronic structure around vortices. They investigated the energy spectra 
around vortices by a point-contact tunneling current probe with an atomic-scale 
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spatial resolution, i.e., the scanning tunneling microscope (STM). The tunnel­
ing current J of the "normal statejinsulatorj(s-wave) superconductor (NIS)" 
junction is given as[7] 

J(V) ex i: dEN(E) {J(E) - f(E + eV)}, (1.1 ) 

where N(E) is the density of states in the superconductor, V is the bias voltage 
applied to the junction, and f(E) is the Fermi function. Differentiating Eq. 
(1.1) about V, one obtains the differential conductance, 

dJ(V) JCXJ dEN(E){ _ df(E + eV)}. (1.2) 
dV ex -CXJ dV 

The derivative of the Fermi function becomes very sharply peaked at E = -e V 
at low temperatures as if it is the delta function. Equation (1.2) means that we 
can obtain the density of states N(E) of the superconductor by measuring the 
differential conductance dJ j dV at sufficiently low temperatures. The spatial 
resolved probe, STM, enables us to measure dJ jdV at each position OIl the 
surface of the superconductor, so that we can obtain the local density of states 
N(r, E) of the superconductor[8]. 

In absence of vortices, or sufficiently far from a vortex, the BCS energy gap 
should appear in the energy spectra. Near the vortex center, on the other hand, 
finite density of states was expected to exist inside the gap, due to the above 
mentioned low-energy bound states (i.e ., the vortex bound states) around a vor­
tex. In Figs. 1.1 and 1.2, shown is the experimental results for the energy spectra 
at the vortex center and at some distance from it, observed first with STM in 
1989 by Hess et al.[6] The superconducting material used in the experiment was 
a clean type-II superconductor, the layered hexagonal compound 2H-NbSe2[8]. 
The BCS gap is certainly recovered far from the vortex center. It was, those 
days, surprising that an unexpected large peak appeared in the experimentally 
observed data at the zero bias voltage at the vortex center. According to the 
experimental result, the above mentioned vortex bound states not only filled the 
gap on the vortex, but also gave the characteristic peak structure at the vortex 
center. It was later called the "zero-bias peak" at the vortex center. Actually 
this peak originates just from the vortex bound state which belongs to the lowest 
eigenenergy El/2 of Caroli et al. (Strictly speaking[9], this large peak is com­
posed of the Ul/2 component of the Bogoliubov wave function (u, v)[4] which 
belongs to E 1/ 2. The component Vl/2, on the other hand, never constitutes the 
large peak at El/2' but just contributes to a smaller peal< at E = -E1/ 2. This 
point is crucial for revealing concealed properties of vortices such as the electric 
charging of the vortex core[10] . I will discuss them in the chapter 3 and 4.) In 
the next section, I point out the open questions of vortices related to the STM 
experiments which I will deal with in the present thesis. 

1.3 Open questions of the vortex structure ob­
served by STM experiments 

As mentioned in the preceding section, Hess et al.[6] succeeded in observing the 
electronic structure around vortices in NbSe2. They further advanced the inves­
tigation and revealed that a vortex had rich and complicated properties in its 
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Figure 1.1: dI/dV vs V for NbSe2 at 1.85 K and a 0.02-T field, taken at three 
positions: on a vortex (top curve), about 75 A from a vortex (middle) and 2000 
A from a vortex (bottom). The zero of each successive curve is shifted up by 
one quarter of the vertical scale. (From Ref. [6].) 

Figure 1.2: Perspective image of dI / dV vs tunneling voltage (horizontal axis) 
and position along a line that intersects a vortex (vertical axis) . Cross sections 
of this image at a few positions are shown in Fig. 1.1. (From Ref. [6].) 
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electronic structure. After the first experimental success by Hess et al_, several 
theoretical studies of the electronic structure around a vortex were prompted by 
the STM experiment . Shore et al.[ll] numerically solved the BdG equation first 
to obtain all the vortex bound states below the gap in order to explain the zero­
bias peak observed in the STM experiment_ As a result, they not only explained 
the existence of the zero-bias peak at the vortex center, but also found an energy 
shift of the peak at a distance from the vortex center[II]. Their numerical result 
showed that the zero-bias peak appeared at the vortex center and the peak split 
into two (positive and negative energy peaks) at some distance from the vor­
tex center. This feature can be understood as follows. If quasiparticles rotate 
on the vortex line, the quasi particles have the angular momentum J-t about the 
vortex center. When J.L is expressed as J.L = PFr, the quasiparticles with larger 
I-L circulate farther away from the vortex center (PF is the Fermi momentum 
and l ' is the radial distance of the quasiparticle from the vortex center). The 
quasiparticle with the larger angular momentum may have the larger energy. 
It is then expected that the energy of the quasiparticle is proportional to th 
radial distance from the vortex center, i.e., the quasiparticles circulate farth er 
away from the vortex center as they have higher energy. The result obtained by 
Shore et al.[ll] reflected just this dispersion relation of the quasiparticle around 
a vortex. (Note that the electron-like (hole-like) quasiparticle around a vor­
tex corresponds to the positive (negative) energy peak.) After this theoretical 
prediction[ll] was made, Hess et al.[12] attempted to observe such a splitting of 
the peak around a vortex and eventually confirmed the prediction successfully 
[Fig. 1.3]. Up to this point, so nice coincidence between experiment and theory 
had been achieved. 

However, a stimulat ing mystery also emerged at that time. In the above 
experiment, Hess et al.[12] not only confirmed the splitting, but also found that 
the STM imaging of a vortex (or the local density of states around a vortex) 
was shaped like a "star" at a fixed energy and its orientation was dependent on 
the energy, i.e., the sixfold star shape rotates as the bias voltage varies [Fig_ 1.4] 
(Fig. 4 in Ref. [12]). In the intermediate energy, a "ray" of the star splits into 
a pair of nearly parallel rays [0.24 m V data in Fig. 1.4] (Fig. 1 in Ref. [13] or 
Fig. 1 in Ref. [14]). A more detailed and lower-temperature investigation also 
revealed later that t he zero-bias peak in the spectral evolution along a radial 
line from the vortex center does not split into two subpeaks observed in the 
earlier experiment, but into three or more ones [Figs. 1.5, 1.6, and 1. 7] (Figs _ 9 
and 10 in Ref. [8], or Fig. 6 in Ref. [15]) . 

These beautiful experimental observations by Hess et al. revealed that vor­
t ices had rich electronic structure, which may be related to the thermodynamic 
and transport properties of superconductors under magnetic fields. Their STM 
experiments shed a new light on the physics of vortices. Yet, there have been 
no sufficient theories which could explain these experimental results, although a 
seminal developing idea has been proposed at the early stage. Such a theoretical 
situation for the experimental results of the electronic structure around vortices 
may have impeded the progress of this field. It has been desired that further 
theoretical development from the early work should be advanced to break the 
deadlock. 

The most thorough theoretical study of a vortex was given in a paper by 
Gygi and Schli.iter[16] in 1991. Fundamental properties of a vortex were dis­
cussed in their paper on the basis of beautiful results of ingenious numerical 
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Figure 1.3: Perspective view of the superconducting spectra as it evolves on an 
800 A line that penetrates through a vortex. Notice the zero-bias peak at the 
vortex center and how it splits into two subgap peaks at larger radius from the 
core. (From Ref. [8].) Note also that the evolution of the split peaks along radial 
line represents a dispersion relation between the energy E (or bias voltage) and 
the angular momentum J-L (or radial distance r) of the quasiparticles around the 
vortex center. 
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Figure 1.4: Real space images of vortices in NbSe2 generated by measuring the 
differential conductance dI/dV(x, y, V) at each fixed bias voltage V (from Ref. 
[13]). 
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Figure 1.S: A detailed perspective of dI / dV (V, r) (at SO mK) showing how 
it evolves along the three lines sketched in Fig. 1.6. The perspective scale 
corresponds to a 1000 A sampling line with the vortex positioned at 250 A 
from the back. The outer subgap peak is not sensitive to angle, but the inner 
peak collapses to zero energy at 30°. A few spectra of the perspective data are 
explicitly plotted in Figs . l.S(d), l.S(e) , and l.S(f). (From Ref. [8] .) 
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Figure 1.6: Schematic of the various sampling lines that pass through the vortex 
core and are used for the spectral evolution data of Figs . 1.S and 1.7. The 
crystallographic a direction is indicated and lines up also with the vortex lattice 
direction. (From Ref. [8].) 

Figure 1. 7: The subgap peak energies of Fig. 1.S as a function of radius . The 
solid line is a guide corresponding to the outer subgap peak data. (From Ref. 
[8].) 
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calculations. Every time I read that paper, I can find significant results re­
newedly and learn much from it. That study is truly excellent work and most 
essence of a vortex is contained in their paper, from which we can get inspira­
tion to investigate various physics of vortices. Simultaneously, however, an issue 
under developing those days was also discussed there. I should point out that 
this issue was just the above mentioned anisotropic electronic structure around 
the vortex observed by the STM experiments. While part of the features of the 
experimental results could be captured by a developing analysis by them[17] , 
further theoretical development is hopefully expected to be advanced. In fact, a 
consistent understanding of both the star-shaped structure and the anisotropic 
spectral evolutions along radial lines mentioned above has been lacking during 
these past years. I have tackled this problem, and found that the rich electronic 
structure observed in the STM experiments (Refs. [12, 13, 14, 8, 15]) was able 
to be understood in a natural way in terms of superconducting gap anisotropy 
in the k space. From a more general point of view, it is found that the com­
plicated electronic structure around the vortex can be consistently understood 
with "quasiparticle trajectories" from the viewpoint of the quasiclassical theory 
of superconductivity. I will discuss them in the chapter 2. 

Another current open question of vortices is the electronic structure around 
vortices in high-Tc cuprate superconductors. The high-Tc cuprates have given 
us many challenging problems in various fields of physics. Peculiar electronic 
structure inside the vortex in these compounds observed recently by a few STM 
experiments[18, 19] is one of the puzzling (but, interesting) properties of the 
high-Tc superconductors. This problem is currently debated on with some con­
fusing. The point may be twofold for the present: (a) a probable anisotropic 
(or unconventional) pairing of the Cooper pair (e.g., d-wave superconductivity), 
and (b) a quantum-limit property, i.e., a possible existence of the short coher­
ence length ~ of superconductivity comparable to the atomic length order 1/ kF 
(kF is the Fermi wave number). As a first step to elucidate the vortex structure 
in the high-Tc cuprates, I investigate the fundamental properties of a vortex in 
the quantum limit (kF~ '" 1). I will discuss it in the chapter 3. Focusing on the 
quantum limit, I can reveal the concealed properties of vortices, e.g., the electric 
charging of vortices. In the chapter 4, I will discuss the vortex core charge as 
an inherent property of general vortices. 

The detailed background and motivation of my work in the present thesis 
will also be given in the introductory sections of each following chapter. 

18 

Chapter 2 

Effects of Gap Anisotropy 
on the Vortex Structure 

2.1 Introduction 

The existence of an anisotropy of a superconducting energy gap has attracted 
a great deal of attention in various superconductors such as heavy fermion, 
organic, and high-Tc compounds. On the other hand, the electronic structure 
around vortices is a fundamental problem on the physics of both conventional 
and unconventional superconductors. In this chapter, we discuss effects of the 
gap anisotropy upon the electronic structure around a vortex, i.e., the bound 
states around an isolated vortex in clean type-II superconductors. 

Theoretically, the bound states around a vortex was discussed in 1964 by 
Caroli, de Gennes, and Matricon[3]' who considered a single vortex in an isotropic 
s-wave superconductor. After this work, several theorists studied the electronic 
structure around vortices (e.g., Refs . [20, 21, 22, 23, 24]). Experimentally, how­
ever, until the following success by Hess et al., there had existed for a long 
time no experiments which could directly study the electronic structure around 
vortices[5]. 

In 1989, a novel experimental method, scanning tunneling microscopy (STM), 
opened up a way to study the electronic structure around vortices in type-II 
superconductors[5, 8]. Using the STM method, Hess et al.[6] succeeded in mea­
suring spatially resolved excitation spectra, i.e., local density of states (LDOS) 
around a vortex. They investigated the bound states around a vortex in the 
layered hexagonal compound 2H-NbSe2 (Tc=7.2 K), and found a striking zero­
bias peak at the vortex center. Later the same peak and its collapse upon 
substituting Ta for Nb as impurities in NbSe2 were also observed by Renner 
et al.[25, 26] Several new theoretical studies of the electronic structure around 
a vortex [27, 28, 11, 29, 16, 30, 31, 32, 33] were prompted by the success of 
the STM experiment by Hess et al.[6] Some of these theories [11 , 16, 30, 31, 32] 
predicted that the zero-bias peak should split into two, i.e., into positive and 
negative bias voltage peaks, if spectra are taken at some distance from the 
vortex center (see, for instance, Fig. 3 in Ref. [11]). This splitting indicates 
that quasiparticles of the vortex bound states with finite angular momentum 
are distributed circularly, and circulate farther away from the core center as 
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they have higher energy. The predicted splitting was actually confirmed in an 
experiment.[12J 

However, a mystery also emerged . In the above experiment, Hess et al.[12J 
not only confirmed the splitting, but also found that the LDOS around the 
vortex was shaped like a "star" at a fixed energy and its orientation was de­
pendent on the energy, i.e., the sixfold star shape rotates as the bias voltage 
varies [Fig. l.4J (Fig. 4 in Ref. [12]). Soon after this observation was made, 
Gygi and Schluter[17J proposed an explanation for this 30° rotation of the star­
shaped LDOS. On the basis of a sixfold perturbation, they explained that the 
two states, i.e., the lower and higher energy stars were interpreted as bond­
ing or antibonding states[17]. Although they explained certain aspects of the 
observation, the following features of the star-shaped LDOS observed in later 
experiments[13, 14, 8, 15] could not be sufficiently understood by this pertur­
bation scheme. In the intermediate energy, a "ray" of the star splits into a pair 
of nearly parallel rays [0.24 m V data in Fig. l.4J (Fig. 1 in Ref. [13J or Fig. 1 
in Ref. [14]). The zero-bias peak in the spectral evolu tion along a radial line 
from the vortex center does not split into two subpeaks observed in the earlier 
experiment, but into three or more ones [Figs. 1.5, 1.6, and 1.7] (Figs. 9 and 10 
in Ref. [8], or Fig. 6 in Ref. [15].) 

Specifically, the characteristic features of the LDOS observed in NbSe2 (Refs. 
[12, 13, 14,8, 15]) are summarized in detail as follows, when the magnetic field H 
is applied perpendicular to the hexagonal plane: (1) The LDOS for quasiparticle 
excitations has a sixfold star shape centered at the vortex core[12]. (2) The 
orientation of this star depends on the energy. At zero bias, a ray of the star 
extends away from the a axis in the hexagonal plane of NbSe2. Upon increasing 
the bias voltage, the star rotates by 30° [Fig. l.4J . (3) In the intermediate bias 
voltage, a ray splits into a pair of nearly parallel rays, keeping its direction fixed 
[0.24 mV data in Fig. I.4J [13, 14]. (4) In the spectral evolution which crosses 
the vortex center, there exist inner peaks in addition to the outer peaks which 
evolve from the zero bias peak at the vortex center into the bulk BCS like gap 
edges far from the vortex [Figs. 1.5, 1.6, and 1.7] [8, 15] . The inner peaks vary 
with the angle of the direction in which the spectral evolution is taken. These 
important and interesting observations (1)-(4) remain unexplained. 

Quite recently, motivated by a possibility of a d-wave superconductivity in 
high-Tc cuprates, Schopohl and Maki[34, 35] studied the electronic structure 
around a vortex in a d-wave superconductor. On the basis of the quasiclassi­
cal Green's function theory[36, 37, 38], the LDOS around a single vortex was 
calculated in a superconductor with a d-wave energy gap. They found that 
the LDOS exhibits a characteristic fourfold structure in the d-wave gap case, 
which is contrasted with the isotropic s-wave gap case (a circularly symmetric 
LDOS)[34, 35]. A gradual 45° rotation of this fourfold LDOS as the energy 
changes was later reported by the present authors[39]. We note that this rota­
tion is similar to that observed in NbSe2 [40]. 

In the context described above, we have investigated the electronic structure 
around the vortex observed in NbSe2. We find that the rich structure of the 
LDOS observed in the STM experiments (Refs. [12, 13, 14,8, 15]) results mainly 
from a superconducting gap anisotropy. Assuming an anisotropic s-wave gap 
analogous to the d-wave one, we are able to obtain results favorably comparable 
with the experiments. In a paper[41], we enumerated the following items as the 
possible origin of the rich structure of the LDOS: (a) the effect of an anisotropic 
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superconducting energy gap, (b) the effect of nearest-neighbor vortices, i.e., the 
effect of the vortex lattice, and (c) the effect of the anisotropic density of states 
at the Fermi surface. It is the purpose of the present chapter to discuss the gap 
effect (a) in detail. As for the item (b), i.e., the vortex lattice effect, we gave a 
detailed report in Ref. [42]. 

To date, NbSe2 has been the only compound in which the electronic struc­
ture around vortices was thoroughly investigated by STM. In this chapter, we 
concentrate our attention on the LDOS observed in NbSe2 as a typical example 
of a type-II superconductor. However, the essence of the present considerations 
is equally applicable to other type-II superconductors in general. The LDOS 
around a vortex reflects the internal electronic structure of the vortex, and an 
understanding of this structure is important in elucidating dynamical properties 
of vortices as well as static ones. 

We consider the case of an isolated static vortex under a magnetic field 
applied parallel to the c axis (or z axis). We restrict ourselves to a two dimen­
sional system, i.e., assume a two dimensional Fermi surface neglecting a small 
warping of the Fermi surface along the c axis, which is appropriate to layered 
superconductors such as NbSe2[87, 109]. 

In Sec. 2.2, we describe the quasiclassical theory we use for the study of the 
vortex. Section 2.3 is devoted to the calculations of the LDOS around a vortex 
under the influence of the gap anisotropy. In Sec. 2.4, we interpret the resultant 
LDOS in terms of quasiparticle trajectories. The summary and discussions are 
given in Sec. 2.5. 

2.2 The quasiclassical theory of superconductiv­
ity 

To investigate the LDOS around a vortex, we use the quasiclassical Green's func­
tion theory[36, 37, 38J. The quasiclassical theory is a very powerful method, 
especially for spatially inhomogeneous systems such as surfaces [45 , 46] and 
vortices [4 7, 48]. Furthermore, one can easily treat a superconducting gap anisotropy 
as well as the Fermi surface anisotropy in the quasiclassical theory. We consider 
the transportlike Eilenberger equation for the quasi classical Green's function 

~ ( . k-) - . ( 9 (iwn' r, k) 
gzwn,r, --Z7r _ ·jt(· k-:) 

Z ZWn , r, 
(2.1) 

in a 2x2 matrix form (for even-parity superconductivity), namely, 

-t:.(r, k)) ~( . k-)] 0 . ,g ZWn , r , =. 
-ZWn 

(2.2) 

The Eilenberger equation (2.2) is supplemented by the normalization condition 

(2.3) 

Here Wn = (2n + l)7rT is the Matsubara frequency. The vector r = (x, y) is the 
center of mass coordinate, and the unit vector k represents the relative coor·di­
nate of the Cooper pair. The over bar denotes unit vectors. The commutator 
[A, B] = AB - BA. We assume the Fermi velocity vF(k) is a function of k with 
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reflecting the anisotropy of the Fermi surface. Since we consider an isolated 
single vortex in an extreme type-II superconductor where the Ginzburg-Landau 
parameter K, » 1, the vector potential can be neglected in Eq. (2.2). 

The Eilenberger equation in the matrix form (2.2) can be written down to 
the following equations, 

( 
VF (B) d) . . 

Wn + -2- dr ll f('twn,r,B) = 6..(r,B)g(2wn,r,B), 

( 
vp( B) d ) t (. ) _ * . Wn - -2- dr ll f 'twn,r,B - 6.. (r,B)g(2wn,r,B), 

6.. * (T, B) f (iwn , r, B) 

- 6..(T,B)ft (iwn,r,B), (2.4) 

which are supplemented by 

g(iwn,r,B) = [1- f(iwn,r,O)ft(iwn,r,O)Jl/2, 

Re g(iwn, T, 0) > O. 

Here, k = (cosB,sinO), 

vF(k) (IVF(B)I cos G(O), IVF(B)I sin G(O)) 

(VF (B) cos G( 0), VF (B) sin G (B)) , 

(2.5) 

(2.6) 

and the following coordinate system is taken: u = cos Gx + sin Gy, v = 
- sin Gx + cos Gy, and thus a point r = xx + yy is denoted as r = Til U + T 1.. v. 
The center of a vortex line is situated at the origin r = (0,0). The angle B, i.e., 
the direction of k is measured from the a axis (or x axis) in the hexagonal plane 
of NbSe2. If one considers a cylindrical Fermi surface with anisotropic Fermi 
velocity, then vF(k) = vF(B)k = (vF(B)cosB,VF(B)sinB). 

The self-consistent equation is given by 

r2
-rr dB' 

6.(r,B) = N0 27rT L io 27r p(B')V(B,B')f(iwn,r,O'), 
Wn>O 0 

(2.7) 

where No is the total density of states over the Fermi surface in the normal state. 
The O-dependence of the density of states at the Fermi surface is represented by 

B _ kF(k) 
p()- Nolk'VF(k)I' 

(2.8) 

which satisfies J(dB /27r)p(B) = 1. We assume that the pairing interaction 
V(B,O') is separable, i.e., V(B, B') = vF(B)F(B' ), where v is the strength of 
the pairing interaction and F(B) is a symmetry function, e.g., F(B) = cos 2B for 
a d-wave pairing, F(O) = 1 for an isotropic s-wave pairing, etc. 

The pair potential is written as 

6..(r,O) = 6..(r)F(O). (2.9) 
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To obtain a self-consistent pair potential, we solve Eqs. (2.4) and (2.7) itera­
tively. This computation is performed after a method of Ref. [39J. In the cal­
culation of the pair potential, we adopt the so-called explosion method[49, 50J 
to solve Eq. (2.4). 

The LDOS is evaluated from 

r2
-rr dB 

N(E, r) = No io 21f P(B)Re g(iwn ~ E + i'T}, r, B) 

r2
-rr dO 

io 27r p(B)N(E, r, B), (2.10) 

where 'T} (>0) is a small real constant. The value of'T} represents the effect of 
dilute impurities in a rough approximation[31, 33J or other smearing effects[51J. 
To obtain g(iwn ~ E + i'T}, r, B), we have to solve Eq. (2.4) for 'T} - iE instead 
of the Matsubara frequency W n . While we succeeded in this calculation in the 
vortex lattice case with the explosion method, a huge computer-running-time 
for the numerical calculation was needed in this mcthod[42J. In the case of the 
isolated single vortex, however, it is convenient to utilize a method ofthe Riccati 
equation developed by Schopohl[34, 35, 52J . The Riccati equation simplifies the 
numerical computation. 

The Riccati equations[34J are given as 

VF(O) d:
11 

a(wn,r,O) - 6.(r,B) + (2Wn + 6..*(r,B)a(wn,r,B))a(wn,r,B) = 0, 

(2.11) 

vF(B) d:11 b(wn,r,O) + 6.*(r,B) - (2Wn + t1(r,B)b(wn,r,B))b(wn,r,O) = O. 

(2.12) 
Equations (2.11) and (2.12) are obtained by substituting the following parametrization[34J 
into the Eilenberger equations (2.4), 

2a t _ 2b 1 - ab 
f=1+ab' f -1+ab' g=1+ab ' (2.13) 

We solve Eqs. (2.11) and (2.12) independently along the rll trajectory where 
T1.. is held constant. In the isolated single vortex under consideration, one can 
integrate Eqs. (2.11) and (2.12) using solutions far from the vortex, 

Jw~ + 16..( -00, r1.., 0) 12 - Wn 
a_= = ~~~~~----~~---

6..*(-oo,Tl..,B) 

Jw~ + 16..(+00,T1..,O)12 -Wn 
6..(+00, r1.., B) (wn > 0) (2.14) 

as the initial values, respectively[52J. To obtain stable solutions, the integral for 
a is performed from Til = -00, and for b from Til = +00[52J. We numerically 
integrate the first-order differential equations (2.11) and (2.12) by the adaptive 
stepsize control Runge-Kutta method[53J. The Green's function g(iwn ~ E + 
i'T}, r, 0) is obtained from Eq. (2 .13) if one solves Eqs. (2.11) and (2.12) for 'T} - iE 
instead of Wn . When we solve Eqs. (2.11) and (2.12) for 'T} - iE, we use the self­
consistently obtained pair potential 6.. (r) which is calculated beforehand. 

From now on (in this chapter), the density of states, energies, and lengths 
are measured in units of No, the uniform gap 6..0 at the temperature T = 0, 
and the coherence length ~o = VFO/6.o (VFO == kF/No), respectively. 
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Figure 2.1 : The density of states N(E) at zero field, where smearing parameter 
7] = 0.03 (solid line) or 7] = 0.001 (dashed line). It is calculated for the isotropic 
cylindrical Fermi surface, and the degree of the gap anisotropy is CA = 1/3. 

2.3 Pair potential and local density of states 

Before going into technical details, we briefly explain our model and its pa­
rameter involved in connection with NbSe2, which is a typical type-II s-wave 
superconductor. We assume the following model of an anisotropic s-wave pair­
ing in Eq. (2.9), 

(2.15) 

Here we again stress that the angle B, i.e., the direction of k is measured from 
the a axis (or x axis) in the hexagonal plane of NbSe2 . Thus the parameter CA 

denotes the degree of anisotropy in the superconducting energy gap[54, 55, 56]. 
The case CA = 0 corresponds to a conventional isotropic gap. 

The anisotropic s-wave gap is certainly suggested in NbSe2 from a scanning 
tunneling spectroscopy (STS) experiment at zero field[15]. The I-V tunneling 
spectrum, observed at the extreme low temperature T = 50 mK, indicates a 
substantial gap anisotropy (the gap amplitude with the averaged value 1.1 meV 
distributes from 0.7 to 1.4 meV, see Fig. 1 in Ref. [15]), which is consistent with 
the density of states in the anisotropic s-wave gap case [Fig. 2.1]. It is seen from 
Fig. 2.1 that the gap edge distributes from E = 1 - CA to 1 + CA in the case 
of the anisotropic gap. Then, the experimental data of STS[15] indicate that 
CA ,...... 1/3. Similarly, a nuclear quadrupole resonance, NQR, experiment[57] in 
NbSe2 suggests an anisotropic s-wave energy gap. The temperature dependence 
of the spin-lattice relaxation rate l/Tl is well fitted by an anisotropic energy 
gap model following Hebel[58] with the value of a parameter 6/.6.(0) r-.J 1/3[57]. 
Here the broadening in the gap edge, 6/.6.(0), of Ref. [57] corresponds to 6/7]0(0) 
of Ref. [58]. This parameter 6/.6. (0) corresponds well to our parameter of the 
gap anisotropy, CA, because both parameters 6 and CA yield the broadening in 
the gap edge. We set CA = 1/3 as a representative case in the following . 

In this chapter, we restrict our attention to t he gap anisotropy effect only, 
neglecting other effects, i.e., the vortex lattice effect and the effect of the 

24 

0.5 

o y 

-0.5 

-0.5 o 0.5 

x 

Figure 2.2: Contour plot of the amplitude of the real-space variation part of the 
pair potential, 1.6.(r)l. From the center, 0.1, 0.2, ... ,0.9. The temperature is 
T = O.lTc, and the degree of the gap anisotropy is CA = 1/3. 

anisotropic density of states at the Fermi surface, to clearly see how the en­
ergy gap anisotropy influences the LDOS. We calculate the LDOS in the iso­
lated vortex case assuming an isotropic cylindrical Fermi surface (VF (k) II k, 
vF(B) = VFO). 

2.3.1 Pair potential 

In order to calculate the LDOS, we need the self-consistent pair potential ob­
tained at the temperature, say, T = O.lTc (Tc is the superconducting transition 
temperature). The self-consistently obtained real-space variation part of the 
pair potential, .6.(r) , certainly exhibits a weak sixfold structure both in its phase 
and amplitude, which results from the anisotropic pairing, Eq. (2.15). This be­
havior is similar to that of the d-wave case[39], but sixfold symmetric here. In 
Fig. 2.2, we show a contour plot of the amplitude of .6.(r). The amplitude 1.6.(r)1 
is slightly suppressed in the x axis direction and its equivalent directions. As 
shown in Fig. 2.2, the spatial variation of .6.(r) has weak anisotropy, but is al­
most circularly symmetric. However, the LDOS shows the characteristic sixfold 
symmetric structure as mentioned below. 

2.3.2 Local density of states 

The LDOS calculated using the self-consistent pair potential has almost the 
same structure, except for the length scale for its spread, as that calculated 
using a test-potential .6.(r) = .6.(T) tanh(r/~) exp(i¢) does, where .6.(T) is the 
uniform gap at the temperature T, ~ = VFO/ .6.(T) , and the cylindrical coordinate 
system r = (r, ¢) is taken. That is, the LDOS does not so affected by the weak 
sixfold symmetric spatial structure of the real-space variation part of the pair 
potential, .6.(r). We have seen the same situation also in the d-wave case.[39] 
It means that a calculated sixfold or fourfold structure of the LDOS directly 
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results from the k-space variation part of the pair potential, F(B). 
In Fig. 2.3, we show the LDOS N(E, r) for several energies E in the case 

CA = 1/3, calculated by using the self-consistently obtained pair potential. It 
is seen from Fig. 2.3(a) that the sixfold star centered at the vortex center is 
oriented away from the x axis by 30° for E = O. Next it is seen from Fig. 
2.3(b) that at the intermediate energy each ray splits into two parallel rays, 
keeping its direction. This characteristic feature was precisely observed in the 
experiment by Hess[13, 14]. With increasing the energy E further, the sixfold 
star becomes a more extended one, and its orientation rotates by 30° as seen 
from Fig. 2.3(c). Note that in Fig. 2.3(c) the head of each ray splits in two. It 
coincides with an experimental result (see the STM image for 0.48 m V in Fig. 
1 of Ref. [13]). In this way, the anisotropic s-wave gap model well reproduces 
the experimental features mentioned in Sec. 2.1: (1) the sixfold star shape, 
(2) the 30° rotation , and especially (3) the split parallel ray structure at the 
intermediate energy. We refer to Fig. 1 in Ref. [41] [Fig. 2.4 in this thesis] 
where the density plots of the LDOS compared with the experimental data are 
displayed, which is complimentary to Fig. 2.3 in the present chapter. 

Another way to examine the quasiparticle excitations in the vortex states is 
to see how the spectrum evolves along radial lines from the vortex center. We 
show the spectral evolutions along the radial lines for 30° in Fig. 2.5(a), 15° in 
2.5(b), and 0° in 2.5(c) from the x axis . The zero-bias peak splits into several 
peaks in each spectral evolution. Cross sections of each spectral evolution at 
r = 1 (1' = Jx2 + y2) are shown in Fig. 2.6 to provide the identification of each 
ridge in Fig. 2.5. 

In the calculation of Figs. 2.3 and 2.5, the smearing factor is chosen as 
rJ = 0.03, which well reproduces the STM experimental data. It corresponds 
to the solid lines of Fig. 2.6, where the peaks are labeled a-c. The case with 
smaller smearing effect (rJ = 0.001) is represented by the dashed lines in Fig. 
2.6, where the spectrum has the sharp peaks labeled as A- E. (The structure of 
these peaks is discussed in the next section.) As shown in Fig. 2.6, by increasing 
the smearing effect, the spectrum of the dashed line (rJ = 0.001) is reduced to 
that of the solid line (rJ = 0.03), and reproduces the STM experimental data. 
It seems that the LDOS actually observed in STM experiments is somewhat 
smeared due to impurities[31, 33] or other smearing effects[51]. 

In Fig. 2.5 (a) (the 30° direction), there exist one peak at E = 0 and three 
pairs of peaks. The peak at E = 0 in Fig. 2.5(a) [the c peak in Fig. 2.6(a)] 
corresponds to the ray which extends in the 30° direction in Fig. 2.3(a). This 
peak is referred to as the inner peak in Refs. [8] and [15]. This inner peak [the 
c peak] corresponds to also the split parallel ray in Fig. 2.3(b) and the head 
of the ray which splits into two in Fig. 2.3(c). The inner c peak is, therefore, 
sensitive to the angle of the radial line, and splits in a pair of peaks with the 
variation of the angle [see Figs. 2.5(b) and 2.5(c)]. On the other hand, the 
most inside pair of peaks in Fig. 2.5(a) [the 6 peak in Figs. 2.5 and 2.6] is not 
sensitive to the angle. This peak is referred to as the outer peak[8, 15] . As 
shown in Fig. 2.7, the behavior of the calculated inner and outer peaks well 
coincide with the experimental result (the experimental feature (4) in Sec. 2.1). 
The positions of the outer 6 and inner c peaks as a function of r are compared 
with the experimental data in Fig. 3 of Ref. [41] [Fig. 2.9J. 

Outside the inner c and outer 6 peaks, extra peaks appear in each calculated 
spectral evolution [the a, (3, and "y peaks in Figs. 2.5 and 2.6]. The result of 
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Figure 2.3: The LDOS N(E, r) (rJ = 0.03) calculated for the energies E = 0 
(a), 0.2 (b), and 0.4 (c). Large peaks in the vicinity of the vortex center are 
truncated in the figures (a) and (b). 
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Figure 2.4: Left column: Tunneling conductance images observed by Hess et 
aI. at 0.1 Tesla for the bias voltage a.OmY (a), 0.24mY (b), 0.48mV (c), where 
1759A x 1759A is shown (also see Refs. [13] and [14]). The horizontal direction 
is the nearest-neighbor direction of the vortex lattice and also is the crystallo­
graphic a direction in NbSe2. Right column: The LDOS images calculated for 
E = 0 (d), 0.2 (e), and 0.32 (f), where 6~o x 6~o is shown and CA = 1/2. 
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Figure 2.5: Spectral evolutions N(E, r) (77 = 0.03) along radial lines for 30 0 

(a), 150 (b), and 00 (c) from the x axis. The zero-bias peak is truncated in the 
figures. The peak lines in the spectra are labeled Q - E. 
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Figure 2.6: Cross sections of the spectral evolutions (Fig. 2.5) at the distance 
from the vortex center, r = 1. The directions of each radial line are 30° (a), 15° 
(b), and 0° (c) from the x axis. The peaks in the spectra are labeled A - E for 
the dashed line spectra (TJ = 0.001) and a - c for the solid line spectra (T} = 0.03). 
The labels a - c correspond to those of Fig. 2.5. 
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Figure 2.7: Comparison of the spectral evolutions between the theory and ex­
periment. Left column: The theoretically calculated spectral evolutions N(E, r) 
(TJ = 0.03) along radial lines for 30° (a), 15° (b), and 0° (c) from the x axis 
[Fig. 2.5]. Right column: The experimentally observed tunneling conductance 
dI jdV(V, 1') on bSe2 (from Ref. [8]), 30° (a), 15° (b), and 0° (c) from the a 
axis [Fig. 1.5] . Note that there exists nice coincidence on the behavior of the 
(inner and outer) peaks. 
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Figure 2.8: Spectral evolution N(E,r) (r; = 0.03) from the angle 0° to 30° along 
a circle whose radius r = 1. The center of this circle is situated at the vertex 
center. The peaks labeled as O:-c correspond to those of Figs. 2.5 and 2.6. 

the calculation shows that the extra peaks are relatively sensitive to the angle 
of the radial line. The existence of the extra peaks is characteristic of the 
gap anisotropy effect. The peaks 0: and /3 merge into the upper edge of the 
energy gap, 1 + CA, far from the vortex. These extra peaks have not been noted 
in experimental data so far. While each peak cannot be clearly identified in 
experimental data yet, it seems that there is at least one new line outside the 
outer peak in the data[59]. It is expected for future experiments to definitely 
identify the extra peaks, 

The dependence of the LDOS on the angle of the radial line is important, 
because it gives a detailed information on the gap anisotropy. To see it, we show 
in Fig. 2.8 a spectral evolution from the angle 0° to 30° along a circle whose 
radius T = 1. From this, we can see how each peak moves, and joins up the 
others with the variation of the angle. As mentioned above, the c peak (that is , 
inner peak) is sensitive to the angle ¢ of the radial line, and the c5 peak (outer 
peak) is insensitive to ¢. The c peak is located at E = 0 for ¢ = 30°. When 
¢ deviates from 30°, the peak splits into two which are positive and negative 
energy peaks. With decreasing ¢ to 0°, the energy E-position of the c peak 
increases. As for the peaks 0:, /3, and " with decreasing ¢ from 30° to 0°, the 
E-position decreases for the, peak, increases for the /3 peak, and is insensitive 
for the Q; peak. The peaks /3 and , overlap each other for ¢ = 30°, and the 
peaks 0: and /3 overlap each other for ¢ = 0° (see also Fig. 2.6), Here , we should 
mention the behavior of the, peak at ¢ ,....., 0°. In Fig. 2.8 , the, peak seems to 
join up the angle-insensitive c5 peak near 0°, that is, the, peak is buried in the 
c5 peak in Figs. 2.5(c) and 2.6(c) (the 0° direction), Such a behavior of the, 
peak intimately relates to the value of the anisotropic gap parameter, CA. The 
above behavior of , is that of the case CA = 1/3. According as CA increases 
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Figure 2.9: The ridge energies of the LDOS as a function of T along the radial 
lines for 0° (a), 15° (b), and 30° (c) from the x axis (solid lines) . CA = 1/2. 
The labels Q;-c are the same as those in Fig. 2.5. Experimental data (Ref. [15]) 
are also presented by points. (outer) and 0 (inner), where T and E are scaled 
by 350A and 1.67m V, respectively, 
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further, the position of the, peak at 0° shifts to the higher energy side [see a 
spectral evolution shown in Fig. 3(a) of Ref. [41] (the 0° direction) [Fig. 2.9(a) 
in this thesis], where CA is set to 1/2 and we can see that a peak line, which 
corresponds to the present peak, (not denoted explicitly in that figure), evolves 
away from the () peak line]. 

2.4 Quasiparticle trajectories 

In this section, we interpret the behavior of the quasiparticle bounded around 
a vortex in terms of the quasiclassical picture. 

2.4.1 Direction-dependent local density of states 

In the quasiclassical approximation, the equations are independently given for 
each direction of k. The Eilenberger equation (or the Riccati equation) for a 
direction k is independent of those for the other directions. The direction­
dependent local density of states N(E,r,e) introduced in Eq. (2.10) is ob­
tained from the solution of the equation for the direction k = (cos 0, sin e). 
The LDOS N(E, r) is calculated by integrating the direction-dependent LDOS 
N(E,r,O) over e. In an isolated vortex state, the structure of N(E,r,O) was 
previously investigated analytically[22, 30, 32] and numerically[30]. According 
to the results of these investigations, N (E, r, 0) has the following structure for 
low energies below ~o in the isolated single vortex[22, 30, 32] . (Here, remind 
ourselves of the notation: r = xx+yy = 7' IIU+ 7'1-V; U = cosex+sinOy, 
v = - sin ex + cos ey.) (i) N(E, r, 0) as a function of r = (1'11,1'1-) vanishes 
everywhere except on a straight line along which 1'1- = const . = T1-(E). This 
straight line and 1'1. (E) are referred to as "quasiparticle path" and "impact pa­
rameter," respectively. (ii) Along the line T 1- = 1'1.(E), N(E,r,O) has a single 
maximum at I'll = 0 and decreases exponentially for I'll --t ±oo. (iii) The im­
pact parameter 1'1. (E) is a monotonically increasing function of E. One defines 
E(1' 1-) as the energy level of the state on the quasiparticle path with the im­
pact parameter 1'1. . In extreme type-II superconductors where K, » 1, E(1' 1.) 
is determined by the minimum value of the amplitude of the pair potential on 
the quasiparticle path 1'1. = 1'1.(E) . For the low energy levels, E(1'1.) is given 
by E(1' 1-)=sgn(1' 1-) I~(1'1 1 = 0, 1'1-)1 in a good approximation. 

On the basis of the above properties (i)- (iii) of the direction-dependent 
LDOS N(E, r, e) studied by Kramer and Pesch[22]' Klein[30], and Ullah et 
al. [32], we interpret our result of the preceding section as follows . 

For simplicity, we concentrate our attention to Eq. (2 .11) as a representative. 
Dividing Eq. (2.11) by F(e) , we rewrite this equation as 

In the case of the isotropic s-wave pairing (F (8) = 1), N (E, r, e) at a fixed 
energy has the identical structure for each direction 8 [the items (i), (ii), and 
(iii)]. Then the LDOS N(E, r), obtained by integrating N(E, r, e) over e, ex­
hibiLs a "ring" shaped structure[34] in the real space. The impact parameter is 
the radius of the ring. 
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Figure 2.10: The direction-dependent LDOS N(E, r, 0) partly integrated from 
o = -30° to 30°, where E = 0.5, TJ = 0.001, and 6Eo x 6~o is shown in the real 
space. 

In the case of an anisotropic pairing, the situation is changed because of 
the terms which include F(e) in Eq. (2.16). According to Eq. (2.16), both the 
length scale in the I'll direction and the energy scale vary with e, but otherwise 
the form of the equation is same as that of the isotropic s-wave case. For the 
direction e where F(O) is suppressed, the length of the spreading of N(E, r, e) 
along the quasiparticle path becomes large [note the items (i) and (ii), and the 
term FtB) d~~1 in Eq. (2.16)]. For the same e, the effective energy becomes large 

and then the impact parameter becomes far from the vortex center [note the 
item (iii) and the term 2;(E) a in Eq. (2.16)]. 

2.4.2 Interpretation on the LDOS around a vortex 

We show the partly integrated N(E, r, 8) in Fig. 2.10, where the integration is 
done from 8 = -30° to 30°, and its schematic figure in Fig. 2.11, for the pairing 
of Eq. (2.15) where CA = 1/3. Here, to clarify the structure of the LDOS, a 
small smearing parameter (TJ = 0.001) is adopted. The peak lines shown in 
Fig. 2.10 are composed of the quasiparticle paths of each direction e described 
above. These peak lines can be interpreted as the flows of quasiparticles shown 
in Fig. 2.11 . It is noted that the trajectories 1 and 2 appear, because F(8) is 
finite at e = -30° and 30°, i.e., the impact parameter is finite at these angles. 
If F(e) has a node, i.e., CA = I, the impact parameter is infinitely far from 
the vortex center for the quasiparticle path of the node direction[60], and the 
trajectories 1 and 2 disappear. In the bound states, the quasiparticles flow along 
these trajectories. We call it "quasiparticle trajectory." The whole state at a 
fixed energy is composed of such flows of quasiparticles along the quasiparticle 
trajectories, while the individual quasiparticle paths of each direction e [the 
items (i) - (iii)] could be considered to be the Andreev reflections. 

We show in Fig. 2.12 the LDOS N(E, r) obtained by integrating the direction­
dependent LDOS N(E,r,e) over all e. A schematic figure which corresponds 
to Fig. 2.12 is shown in Fig. 2.13. The peaks which the radial lines cross are 

35 



2 

2 

3 3 

Figure 2.11: Schematic flow trajectories of quasiparticles with an energy 0 < 
E < (1- CA). These trajectories correspond to those shown in Fig. 2.10 . When 
(1 - CA) < E < (1 + CA), the trajectories 1 and 2 disappear and only the 
trajectory 3 is alive. 

labeled A- E there. When the energy E elevates, the scale of the trajectory in 
Fig. 2.13 increases with keeping its structure fixed. Therefore, the trajectory 
has one-to-one correspondence to the peak of the spectrum of Figs . 2.5-2.8 . 
The peaks A- E of Fig. 2.13 precisely correspond to those of Fig. 2.6. These 
peaks are smeared to appear as a - c peaks in Fig. 2.6 (and thus in Figs. 2.5 
and 2.8). The LDOS actually observed in STM experiments is not that shown 
in Fig. 2.12 itself, but somewhat smeared one [Figs. 2.3, 2.5, and 2.6] due to 
impurities[31, 33] or other smearing effects[51]. Roughly speaking, the peaks A, 
B, C, D1, and E correspond to the peaks a, fJ, " <5, and c, respectively. 

The trajectory of Fig. 2.13 helps us to facilitate an understanding of the rich 
structure of the LDOS. The trajectories B and C cross each other at the angle 
¢ = 30° from the x-axis in Fig. 2.13. Then, the peaks Band C (i.e., fJ and ,) 
overlap each other in Figs. 2.5(a) and 2.6(a) . The cross of the trajectories A and 
B at ¢ = 0° in Fig. 2.13 corresponds to the overlap of the peaks A and B (i.e., a: 
and fJ) in Figs. 2.5(c) and 2.6(c). When ¢ varies from 30° to 0°, the trajectories 
C and D1 cross each other in Fig. 2.13, where CA = 1/3. It corresponds to the 
result that the peaks I and <5 interchange their positions between Figs. 2.6(b) 
and 2.6(c). However, this behavior of, and <5 depends on the anisotropic gap 
parameter CA as mentioned at the end of Sec. 2.3. In the case of large CA, the 
trajectories C and D1 does not cross for 0° ::; ¢ ::; 30° in Fig. 2.13. Even at 
¢ = 0°, the trajectory D1 is located farther from the vortex center than the 
trajectory C, for large CA. Then, the peak C (i.e ., ,) is located at higher energy 
than the peak D1 (i.e., <5) in the spectrum of Figs. 2.6(c) and 2.8, for large CA. 

As seen in Fig. 2.6, the peak D2 tends to be buried in the other peaks, due to the 
smearing effects. However, if the experiment is performed for the weak smearing 
case, the peak D2 should be observed as a small peak, which splits from the 
peak Dl (i .e., <5) at ¢ = 30° and approaches the peak E (i.e., c) with decreasing 
¢ to 0°. This D2 peak seems to be easily observed for the angle 0° < ¢ < 10°. 
We detect a small indication of the D2 peak for this angle region, if Fig. 2.8 is 
enlarged at ¢ rv 0°. The trajectories D 1 and E (i.e., <5 and c) corresponds to 
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Figure 2.12: The LDOS N(E,r) which is obtained by integrating the direction­
dependent LDOS N(E, r, e) over e, where E = 0.5,1] = 0.001, and 6~o x 6~o is 
shown. 

Figure 2.13: Schematic figure of the LDOS N(E, r) for an energy 0 < E < 
(1 - CA). Points A-E correspond to the peaks of the dashed line spectra in Fig. 
2.6. 
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the trajectories 1 and 2 of Fig. 2.11, which is related to the lower edge of the 
anisotropic energy gap. Therefore, these trajectories disappear for the higher 
energy, (1- CA) < E < (1 + CA). The peaks D1 and E (i.e., 0 and E) merge into 
the lower edge of the energy gap at E = 1 - CA far from the vortex. 

2.4.3 Flows of quasiparticles around a vortex 

The flows of the quasiparticles mentioned above are quantitatively represented 
by the following quantity, 

127r de 
I(E, r) = -p(e)vF(B)N(E, r, B), 

o 27r 
(2.17) 

which we tentatively call "directional local density of states." This directional 
LDOS corresponds to a quantity obtained by integrating "spectral current den­
sity" introduced by Rainer et al.[48] over B (or Pj in Ref. [48]). The total current 
density around a vortex is composed of the spectral current density[48]. In Figs. 
2.14(a), 2.14(b), 2.14(c), and 2.14(d), we show the directional LDOS I(E, r) cal­
culated for E = 0.2, 1.2, 1.4, and 1.6, respectively. Here I(E, r) is calculated 
under the condition considered in this section, i.e., under the anisotropic gap 
and the isotropic cylindrical Fermi surface. It is seen from Fig. 2.14(a) that the 
flow of the quasiparticle exhibits a sixfold anisotropy resulting from the sixfold 
LDOS of the bound states (Fig. 2.3(b) and thus Fig. 2.13) . Now, it is of interest 
to note the flow with an energy near the upper gap edge, E = 1 + CA (~ 1.3). 
Comparing Figs. 2.14(b) and 2.14(d), we can see that the quasiparticles above 
and below the upper gap edge flow each other in reverse directions except in the 
vicinity of the vortex center. It certainly coincides with a result of an analysis 
based on the Bogoliubov-de Gennes equation[16]. This feature should not be 
influenced by the gap anisotropy. 

2.5 Summary and discussions 

The LDOS around an isolated single vortex is studied within the framework 
of the quasiclassical theory. We consider the effect of the anisotropy of the 
superconducting energy gap. Assuming the anisotropic s-wave energy gap in 
Eq. (2.15)' we succeed in theoretically reproducing the characteristic structure 
of the LDOS observed in STM experiments; the observed features, i.e., the items 
(1) - (4) for NbSe2listed in Sec. 2.1, are well described in terms of the anisotropic 
gap model. We point out the existence of the missing peaks (a, /3, and ,) at 
the higher energy side in the spectral evolution shown in Figs. 2.5- 2.8, which 
is expected to be looked for in a future experiment. We also notice the further 
splitting of the observed broad peaks as shown, for example, in Fig. 5(b) (0 -t 
D1 and D2). These predictions, which reflect the gap anisotropy, may be checked 
by using a purer sample at lower temperatures, because smearing effects, due 
to lattice defects or thermal broadening, mask the fine details . We attempt 
to interpret the calculated LDOS in terms of the quasiparticle trajectory. This 
enables us to thoroughly understand the STM results and the internal electronic 
structure of the vortex. In this chapter, the value of our parameter is chosen 
appropriate for NbSe2. However, the essence of the obtained results should 
be applicable to other type-II superconductors in general although the degree 
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Figure 2.14: The directional LDOS I(E, r) (TJ = 0.03) for the energies E = 0.2 
(a), 1.2 (b), 1.4 (c), and 1.6 (d). The arrows in the figures represent only the 
directions of I(E, r). 
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of the gap anisotropy CA and the symmetry of F(B) will be different in each 
case. Even in other anisotropic superconductors, the explanation in terms of 
the quasiparticle trajectory would be helpful to an understanding of the internal 
electronic structure of vortices. 

2.5.1 Comparison with other theories and effects of the 
vortex lattice 

Let us comment on prior works which are connected with the star-shaped LDOS 
observed in NbSe2' On the basis of a sixfold perturbation, Gygi and Schluter[17] 
explained that the lower and higher energy stars observed by STM were inter­
preted as bonding or antibonding states. The STM results (1) and (2) listed in 
Sec. 2.1 were able to be explained by this perturbation scheme. They adopted 
a sixfold crystal lattice potential in NbSe2 as the perturbation. Recently, Zhu, 
Zhang, and Sigrist[61] investigated the effect of the underlying crystal latt ice 
by means of a non-perturbation method, i.e., a method of diagonalizing a tight­
binding Bogoliubov-de Gennes (BdG) Hamiltonian in a discrete square lattice, 
where the crystal lattice potential, i.e., the band structure is determined a priori. 
This method supplements the perturbation theory of Ref. [17]: the absolute ori­
entation of the star relative to the underlying crystal lattice was determined[61]. 

By this non-perturbation approach, also a gradual rotation of the star­
shaped LDOS was obtained in the intermediate energy region[61]. Neverthe­
less, it is not yet clear whether the crystal lattice effect is able to reproduce the 
remaining experimental findings (3) and (4) , i.e., the split parallel ray struc­
ture and the behavior of peaks in the spectral evolutions. The model used in 
Ref. [61] is the discrete latt ice model, and therefore it is impossible to obtain 
detailed spectra, e.g., spectral evolutions along radial lines , due to the discrete­
ness. Hence, it is desired to treat the crystal lattice potential effect with a 
non-perturbation method in the continuum limit. 

Now, the crystal lattice potential determines the band structure, and in­
fluences the structure of the Fermi surface. The effect of the crystal lattice 
potential should appear as the anisotropy of the Fermi surface. In our frame­
work, the anisotropy of the Fermi surface is taken into account by assuming an 
anisotropic density of states at the Fermi surface, p( B), which appears in the 
B-integral of Eq. (2. 10)' and the anisotropic Fermi velocity vF(B), which appears 
in the Eilenberger (or Riccati) equations. The experimental findings (1) - (4) can 
be reproduced qualitatively, if we introduce a large anisotropy in vF(B). 

Gygi and Schluter considered also the effect of nearest-neighbor vortices, 
i.e, that of the vortex lattice[17] . They adopted a sixfold anisotropy of the 
vector potential as the vortex lattice effect, and treated it as the perturbation. 
However, the periodicity of the pair potential is also an important effect of 
the vortex lattice, as pointed out by Klein and Pottinger[30, 33]. In extreme 
type-II superconductors such as NbSe2 where /'i, » 1, the periodiCity of the pair 
potential is expected to have stronger effects upon the structure of the LDOS 
than the anisotropy of the vector potential does. We find in Ref. [42] that the 
effect of the periodicity gives a characteristic sixfold structure to the LDOS. 

This structure of the LDOS which results from the periodicity of the pair 
potential appears only at high magnetic fields such as 1 T for the material 
parameters appropriate to NbSe2, where the vortex core regions substantially 
overlap each other[42]. At a lower magnetic field such as 0.1 T, the calculated 
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LDOS reduces to the almost circular structure. On the other hand, the LDOS 
observed in a STM experiment exhibits the star-shaped structure in spite of a 
low field 0.025 T (see Fig. 12 in Ref. [62]). Therefore, in the case of NbSe2 at 
low magnetic fields, we need to consider the effects of ani otropy other than the 
vortex lattice effect in order to explain the star-shaped LDOS. Both the vortex 
lattice effect and the anisotropic superconducting gap one are important for the 
star-shaped LDOS observed in NbSe2 at high magnetic fields. We expect a fu­
ture STM experiment to be performed on isotropic superconducting compounds 
or metals to clarify the vortex lattice effect and confirm predictions of Ref. [42]. 

In STM experiments on NbSe2, one of the directions of nearest-neighbor 
vortices coincides with the a axis (see the literature by Hess et al. [8 , 6, 12, 
13 , 14, 15, 62, 63] or Renner et al.[25]) , except for extreme low fields[64] . This 
experimental fact gives evidence of a correlation of the vortex lattice with the 
underlying crystal lattice of NbSe2. It was recently found that in d-wave super­
conductors, higher-order (nonlocal correction) terms in the Ginzburg-Landau 
equation, which reflect the fourfold symmetric property of the d-wave pairing, 
give rise to a preferred direction of the vortex lattice[65, 66, 67]. In NbSe2, 
the sixfold anisotropic pairing, Eq. (2.15), is expected to give rise to the same 
correlation as the d-wave pairing does, and it may be the origin of the ex­
perimental fact mentioned above. A possibility of the correlation of the vortex 
lattice with the underlying crystal lattice was recently reported also in a high-Tc 
cuprate[68, 69]. 

2.5.2 Beyond the quasi classical approach 

We mention the LDOS around a vortex in high-Tc cuprates. It seems from 
various experiments that high-Tc material is ad-wave superconductor[70]. A 
fourfold structure of the LDOS is predicted in d-wave superconductors by theo­
retical studies based on the quasiclassical theory[34, 35, 39]. The origin of this 
fourfold structure is same as that discussed in the present chapter for the gap 
anisotropy. Recently, Maggio-Aprile et al. observed tunneling spectra around 
vortices in a high-Tc cuprate, YBa2Cu307-0, with STM[18, 71, 69]. However, 
the spectroscopic images of STM have not exhibited any sign of a fourfold 
structure yet. We expect further detailed experiments to observe the fourfold 
symmetric LDOS structure. 

When we consider the high-Tc materials, the quantum effects should be 
taken into account. The quasiclassical theory is certainly valid only in systems 
where the atomic scale spatial variation of the Green's function can be neglected 
wi th respect to the coherence length scale one[38, 72]. The effects neglected in 
the quasiclassical theory can be important in the case of the high-Tc cuprate; 
the quantization of energy levels of the bound states cannot be treated by the 
quasiclassical theory, and while it is possible in the quasi classical approximation 
to divide the equation into individual equations for each direction of k, it is 
impossible in the quantum-mechanical limit. Although we expect the fourfold 
structure of the LDOS should be observed in future experiments , the above 
effects may change the situation in the case of the high-Tc cuprate. It is certainly 
desired on the theoretical side that a fully quantum-mechanical approach clears 
up this problem in future . 

As for the fully quantum-mechanical approach, it is needed to solve the BdG 
equation without quasiclassical approximations. The BdG equation cannot be 
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written in a local form in the case of an anisotropic pairing, and therefore it 
is difficult to treat this equation in the continuum limit. One of the possible 
approaches to this problem is the method of diagonalizing a BdG Hamiltonian 
for a specific lattice model[61, 73, 74, 75, 76]. In the lattice model, however, the 
atomic scale variation of wave functions among the lattice points is uncertain. 

In most superconductors (~ » l/kF), the atomic scale variation of the wave 
function is a redundant information and can usually be neglected on the basis of 
the quasiclassical theory. On the other hand, in the high-Tc cuprate supercon­
ductors, kF~ ~ EF / 6. 0 r-.J 1 (the Fermi wave-number and energy are kp and EF, 
respectively)[72], and therefore the atomic scale variation and the quantization 
of bound states in a vortex may be crucial for the electronic structure around 
the vortex in the cuprates. 

The high-Tc cuprate is certainly the only superconductor possessed of a 
possibility of an experimentally detectable quantization in the vortex bound 
states. According to Ref. [3], a substantial energy quantization (of the order 
of 6.6/EF r-.J 10 K) is expected to exist in the high-Tc cuprate. However, to 
the present author's knowledge, the system considered in Ref. [3] is an isotropic 
s-wave superconductor and the mechanism of the quantization in the case of 
anisotropic pairing is not yet understood. In case of gap node due to anisotropic 
pairing, it is expected that the separation of the energy levels becomes small. 
Further experiments, which, e.g., investigate spatial variation of this quantized 
bound states in the high-Tc cuprates with STM and then compare its result 
with the quasiclassical prediction[34, 35, 39] in order to clarify how the quan­
tum effects mentioned above modify the vortex bound states, are the need for 
alternative theoretical studies of the vortex bound states . 

2.5.3 Concluding remarks 

The electronic structure of vortices in a compound, LuNi2 B2 C, was quite re­
cently investigated by STM[77] . Although no conductance peaks related to 
localized quasiparticle states in the vortex core are observed in the experiment, 
due to a short mean free path (of the order of the coherence length) and thermal 
broadening effects at 4.2 K (Tc :::::::: 16 K) [77], a rich (maybe fourfold) structure 
of the LDOS such as that discussed in the present chapter is expected to be de­
tected in STM spectra by lowering the temperature and decreasing impurities 
or defects. If an anisotropic bound states around a single vortex is observed, 
it should suggest an anisotropy of the pairing in this compound. The direction 
(in the k-space) in which the superconducting gap is suppressed corresponds to 
that (in the real space) of a ray of the LDOS at zero bias. 

Finally, low-temperature STM is the unique experimental method which has 
the ability not only to image the distribution of the vortex lattice, but also to 
probe the electronic structure of individual vortices. We expect future STM 
experiments to be performed in vortex states on various superconductors such 
as organic conductors, high-Tc cuprates, heavy fermion superconductors (e.g., 
UPt3), and a recently discovered non-copper-layered perovskite superconductor, 
Sr2Ru04[78] which has nearly cylindrical Fermi surfaces[79, 80] and a possibil­
ity that an odd-parity superconductivity would be realized in it[81, 82]. The 
information on the vortex bound states available from STM spectra can be one 
of clues to the pairing. The low-temperature STM experiments deserve a great 
deal of attention. 
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Chapter 3 

Quantulll-Lilllit Property of 
a Vortex 

3.1 Introduction 

Growing interest has been focused on vortices both in conventional and un­
conventional superconductors from fundamental and applied physics points of 
view. This is particularly true for high-Tc cuprates, since it is essential that one 
understands fundamental physical properties of the vortices in the compounds 
to better control various superconducting characteristics of some technological 
importance. Owing to the experimental developments, it is not difficult to reach 
low temperatures of interest where distinctive quantum effects associated with 
the discretized energy levels of the vortex bound states are expected to emerge. 
The quantum limit is realized at the temperature where the thermal smear­
ing is narrower than the discrete bound state levels[22]: T /Tc ::; l/(kF€o) with 
~0=VF/6.0 the coherence length (6. 0 the gap at T = 0) and kF (VF) the Fermi 
wave number (velocity). For example, in a typical layered type-II superconduc­
tor NbSe2 with Tc = 7.2 K and kF~O ,....., 70, the quantum limit is reached below 
T < 100 mK. As for the high-Tc cuprates, the corresponding temperature is 
rather high: T < 10 K for YBa2Cu307-o (YBCO). 

Important microscopic works to theoretically investigate the quasiparticle 
spectral structure around a vortex in a clean limit are put forth by Caroli et 
al. [3, 83], Kramer and Pesch[22], and Gygi and Schliiter[16]. The low-lying ex­
citations are essential to correctly describe low-T thermodynamic and transport 
properties in the vortex state (or the mixed state). These include anomalous 
electric[84, 85] or thermal Hall conductivity[86] and mysterious observations 
of the quantum magnetic dHvA oscillations[87]; various topics are debated 
intensively[88] . Yet there has been no serious attempt or quantitative calcu­
lation to explore deep into the quantum regime. 

The purposes of the present chapter are to reveal the quantum-limit aspects 
of the single vortex in s-wave superconductors and to discuss a possibility for 
the observation of them. 

The present study is motivated by the following recent experimental and 
theoretical situations: (1) The so-called Kramer-Pesch (KP) effect[22, 16, 89, 
90]; a shrinkage of the core radius upon lowering T (to be exact, an anomalous 
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increase in the slope of the pair potential at the vortex center at low T) is 
now supported by some experiments[91J. The T dependence of the core size 
is studied by f.LSR on NbSe2[92] and YBCO[93], which is discussed later. The 
KP effect, if confirmed, forces us radically alter the traditional picture[l] for the 
vortex line such as a rigid normal cylindrical rod with the radius ~o . (2) The 
scanning tunneling microscopy (STM) experiment on YBCO by Maggio-Aprile 
et ai.[18], which enables us to directly see the spatial structure of the low-lying 
quasiparticle excitations around the vortex, arouses much interest. They claim 
that surprisingly enough, there exist only a few discretized bound-state levels 
in the vortex core, i.e., the vortex is almost "empty." It resembles our naive 
image for conventional s-wave superconductors where in the quantum limit a few 
quantized levels of the bound states remain inside the bulk energy gap D.o. (3) 
The theoretical situation on this subject[18] is still very confusing; Some[74, 94J 
claim that the bound-state energy levels are not discretized for d-wave pair, but 
discretized for s-wave pair. Some[72J claim the discretized-like structure even 
for the former. For s-wave case, where the formulation of the problem is well 
defined, we should establish our understanding of the vortex structure in the 
quantum limit. (4) Lastly, we are motivated by a curiosity; Previously we have 
calculated the local density of states (LDOS) for s-wave pair on the basis of 
the quasiclassical (Eilenberger) theory[41, 95, 42], successfully applied to the 
STM observations on NbSe2 done by Hess et ai.[8, 6, 12, 13, 14, 15]. We are 
particularly interested in what happens in LDOS at further lower T, say, below 
50 mK deep into the quantum limit, at which it may be now feasible to perform 
STM experiments. 

Prompted by these motivations, we self-consistently solve the Bogoliubov-de 
Gennes (BdG) equation[4], which is one of the most fundamental microscopic 
equations of superconductivity and contains fully quantum effects. 

3.2 Bogoliubov-de Gennes theory 

We start with the BdG equations for the quasiparticle wave functions Uj (r) and 
vj(r) labeled by the quantum number j: 

[2;F~0 \7 2 
- EF] Uj(r) + D.(r)Vj(r) = Ejuj(r), 

-[2;F~0 \72 
- EF] vj(r) + D. ·(r)uj(r) = Ejvj(r), (3.1) 

in a dimensionless form, where D.(r) is the pair potential and Ep (=kF~oj2) the 
Fermi energy. The length (energy) scale is measured by ~o (D.o). For an isolated 
single vortex in an extreme type-II superconductor, we may neglect the vector 
potential in Eq. (3.1). The pair potential is determined self-consistently by 

D.(r) = 9 L uj(r)vj(r){l- 2f(Ej)} (3.2) 
IEjl::;WD 

with the Fermi function f(E). Here, 9 is the coupling constant and Wo the 
energy cutoff, which are related by the BCS relation via the transition tem­
perature Tc and the gap D.o· We set Wo = 10D.o. The current density is 
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Figure 3.1: The spatial variation of the pair potential D. (r) normalized by D.o 
around the vortex for several temperatures and kF~O = 16. The length r is 
measured by ~o. 

given by j(r) ex: ImLj [J(Ej)uj(r)\7uj(r) + {I - f(Ej )}vj(r)\7vj(r)]. We 
consider an isolated vortex under the following conditions. (a) The system 
is a cylinder with a radius R. (b) The Fermi surface is cylindrical, appro­
priate for the materials such as NbSe2 and high-Tc cuprates. (c) The pair­
ing has isotropic s-wave symmetry. Thus the system has a cylindrical sym­
metry. We write the eigenfunctions as uj(r) = unll(r)exp[i(f.L - t)t9] and 
vj(r) = vnll(r) exp[i(f.L + t)t9] with D.(r) = D.(r) exp[ - ie] in polar coor­
dinates, where n is a radial quantum number and the angular momentum 
I f.L1 = t, ~, ~, .. '. We expand the eigenfunctions in terms of the Bessel func­
tions Jm(r) as unll(r) = Li Cni¢illl-!I(r) and Vnll (1') = Li dni¢illl+-!I(r) with 

¢im(r) = RJ 1 . ) Jm(aimrjR), (i = 1,2,"',N, and aim is the i-th zero 
lTl+l atTn 

of Jm(7'))' The BdG is reduced to a 2N x 2N matrix eigenvalue problem[16]. 
Our system is characterized by kF~O, which is a key parameter of the present 
problem. 

3.3 Results 

In Fig. 3.1, the calculated spatial variation of D. (r) is displayed for various T. It 
is seen that as T decreases, the core size 6 defined by ~ll = lim,·-;o 6. (r) / (r6. oo (T)) 
shrinks and the oscillatory spatial variation with a wave length'" 1/ kF becomes 
evident in D.(r) [22, 16]. The physical reason for this Friedel-like oscillation lies 
in the following facts. All eigenfunctions unll(r) and vnll(r) contain a rapid 
oscillation component with l/kF . At lower T the lowest bound states, whose 
oscillation amplitude is large near the core, dominate physical quantities. We 
note that the oscillatory behavior can always appears at sufficiently low T ir­
respecti ve of values of kF~O. We also mention that a similar oscillatory spatial 
variation around a vortex core in the Bose condensate of 4He is found theoreti­
cally, due to the roton excitations[96]. 
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