学位論文内容の要旨

求愛期の雄コオロギは、交尾によって約1時間、求愛・交尾行動をしない状態（交尾不応期）となる。また、求愛期においても侵害刺激によって一時的な交尾不応状態となる。本研究では、神経節の除去や神経縦連合の切断標本を用いて、人為刺激に対する交尾反応性を調べることにより、求愛期と交尾不応期における交尾反応の抑制中枢および抑制に関与するニューロン群の同定を行った。その結果、1）交尾直後では、精包の放出により最終腹部神経節（TAG）内で何らかの神経性変化が生じ、そこからの持続的出力を受けた脳が交尾を抑制する。2）精包準備行動後では、さらに、脳を介さない経路で、TAGからの長時間抑制が発動する。3）求愛期の抑制は、外部刺激によって脳内で発生したストレスによって脳が交尾の抑制を発動する。4）求愛期と不応期の交尾抑制に関わる脳の出力ニューロンは、同じものである可能性が高く、脳の後方部に細胞体をもち、軸索を反対側に出ているニューロン群（約30個）に含まれている可能性が高い。5）これらの抑制の発動は、パターンジェネレータに対し制御作用をする。以上が明らかとなった。
論文審査結果の要旨

求愛期の雄コオロギは、交尾によって約1時間、求愛・交尾行動をしない状態（交尾不応期）となる。また、求愛期においても侵害刺激によって一時的な交尾不応状態となる。本研究では、神経節の除去や神経縄連合の切断標本を用いて、人為刺激に対する交尾反応性を調べることにより、求愛期と交尾不応期における交尾反応の抑制中枢および抑制に関与するニューロン群の同定を行った。その結果、1）交尾直後では、精包の放出により最終腹部神経節(TAG)内で何らかの神経性変化が生じ、そこからの持続的出力を受けて脳が交尾を抑制する。2）精包準備行動後では、さらに、脳を介さない経路で、TAGからの長時間抑制が発動する。3）求愛期の抑制は、外部刺激によって脳内で発生したストレスによって脳が交尾の抑制を発動する。4）求愛期と不応期の交尾抑制に関わる脳の出力ニューロンは、同じものである可能性が高く、脳の後方部に細胞体をもち、軸索を反対側に出しているニューロン群(約30個)に含まれている可能性が高い。5）これらの抑制の発動は、パターンジェネレータに対し量的作用をする。以上が明らかとなった。

以上のように、本論文は、昆虫において、脳が交尾行動の抑制を司ることを明解に示したものであり、かつ、抑制に関与するニューロンの所在を明らかにしたものである。論文の内容は、質、量ともに博士論文として十分に値するものと認定される。以上