学位論文内容の要旨

南アジア、東南アジア諸国においては、イネの20〜80％が天水田で栽培され、しばしば旱害による著しい収量減を伴う極めて不安定な生産を強いられている。

本研究では、耐乾燥性の要件である低塩塩水分条件下で吸水蒸散できる特性に焦点を当て、この特性を構成する具体的形質を解明するとともに、ストレスに遭遇した場合の耐乾燥性品種と感受性品種の生理反応の差異の検討を通じて、イネの耐乾燥性機構の解明を試みた。

その結果、低い塩分条件でも吸水蒸散できる特性は、水ボテンシャルの低下に耐えられる通透機能の重視さと水損失の小さいクチクラ層を形態的背景として、ストレス遭遇時に増加するアプシン酸の量とそれに対する気孔開閉の感受性、および葉身の関筋と加水分解酵素の種類によって決定される浸透調節能力によって構成されていることを明らかにした。そして、これらの観点から、イネ品種の耐乾燥性のタイプとメカニズムを体系的に明らかにするとともに、乾燥害を被らない地域でも、これらの知見に基づいた耐乾燥栽培法を具体的に発展させることによって、収量の向上と安定化が十分に期待できることを実証的に示した。
論文審査の結果の要旨

南アジア、東南アジア諸国においては、イネの20〜80%が天水田で栽培され、しばしば早害による著しい収量減少を伴う極めて不安定な生産を強いられている。

本研究では、耐乾燥性の要件である低土壌水分条件下でも吸水し蒸散できる能力に焦点を当て、この吸水蒸散能力を構成する具体的形質の解明と、ホストストレスに遭遇した場合の耐乾燥性品種と感受性品種の生理反応の差異の検討を通じて、イネの耐乾燥性機構の解明を試みた。

その結果、ホストストレスに対するイネ品種の反応には大略3つの型が認められることを明らかにし、低い帯地水ポテンシャル条件下においても吸水し蒸散できる特性には、水の通導性組織に係わる植物体のrigidity、アブシンシン酸の増加とそれに対する気孔開閉の感受性、クチクラ層からの水損失の制御に加えて、ホストストレス遭遇時に澱粉を糖に変える浸透調節能力が、イネの耐乾燥性を構成する重要な要素であることを明確にし、イネの耐乾燥性のメカニズムを体系的に明らかにした。

すなわち、根圏一作物体一大気系の中におけるイネの対乾燥反応についてのこれまでの概念的な理論構築をさらに進めて、確実で具体的な根拠に基づいて、耐乾燥性機構の成立を立証し得る場面を明示したものである。このことは、イネに限らず他の作物の耐乾燥性を検討する上での基本的モデルとしても極めて有意義なものと評価される。

耐乾燥性解明の手がかりとした茎・根の直径や後生導管の太さ、珪酸、水分、糖、澱粉、リグニン、細胞壁物質等は、耐乾燥性品種の育種目標形質として、また、実際の栽培法改革に当たっての有力な指標となり得るものであり、本研究の知見を活用しての耐乾燥栽培技術の発展による収量向上と安定化が十分に期待される。

よって、本論文は博士（農学）の学位論文として十分価値あるものと判定する。