【緒言】
下顎頸転骨は、下顎の成長発育に関与する重要な場と考えられており、その成長の機構を解明するため従来より様々な研究が行われてきた。下顎頸転骨の基質構成成分に関しても近年検索が進み、成長期の基質においてはII型、X型コラーゲンなどの軟骨特有のコラーゲンのほかに、一次軟骨には存在しないとされるI型コラーゲンの存在が報告されている。しかし、これらのコラーゲンの遺伝子が、下顎頸転骨の軟骨内骨化の過程において、どの分化段階の細胞に発現されるかは明らかではない。また、これらの遺伝子の発現様式が、生後発育に伴いいかに変化していのかは不明である。本研究では、上記不明点を明らかにするために、幼若マウス下顎頸転骨におけるI型、II型、X型コラーゲンの遺伝子の発現と局在をin situ hybridization法により観察し、さらにその成長、成熟の過程での変化を検討した。

【材料と方法】
実験動物ならびに標本作製：ICRマウスのオス1週から13週までの奇数週齢群各10匹を使用した。4％パラフォルムアルデヒド溶液で灌流固定し下顎顔部を摘出後、さらに4℃、16時間の浸漬固定を行った。次に、摘出材料を20％EDTA溶液で4℃、約10日間脱灰した後、常法に従いパラフィン包埋した。前頭断にて厚さ4μmの連続切片を作製し、下顎頸転骨中央部付近の隣接切片に対して、H-E染色およびin situ hybridization法を施した。

in situ hybridization法：ディゴジシゲニン標識RNA probeを用いたnonRL法にて行った。Probeとしては、マウスのI型、II型、X型コラーゲンの各α1cDNA断片（I型：約0.9kb、II型：約0.2kb、X型：約1.2kb）より、DIG RNA Labeling Kit (Boehringer Manheim)を用いてin vitro transcriptionを行い、ディゴジシゲニン標識RNA probeを作製した。切片を前処理後、50℃、16時間hybridizationを行い、続いてDIG Nucleic Acid Detection Kit (Boehringer Manheim)を用い抗抗体反応による検出を行った。

【結果】
1）組織所見：1週齢下顎頸転骨は、細胞の形態や配列を基準として表層から関節層、増
殖細胞層、成熟細胞層、肥大細胞層に層区分された。1週齢から5週齢にかけて各層の幅は大きく減少し、7週齢になると関節層から成熟細胞層の層区分が不明確になった。7週齢から9週齢にかけて、一旦減少した成熟細胞層の幅は再び増大し、一方肥大細胞層はその幅をさらに減少させ、軟骨下の骨壁は次第に太くなった。軟骨小胞の開放や血管侵入は明確に認められず、9週齢において軟骨内骨化へはほぼ終了していた。13週齢になると軟骨直下は軟骨下骨を呼ばれ層板骨でほぼ占められるようになり、成熟した関節軟骨となった。

2) 各コラーゲン遺伝子の発現と局在（1週齢）：I型コラーゲンmRNAのシグナルは、関節層、增殖細胞層、成熟細胞層の細胞に認められ、細胞の肥大化に従いシグナルは減弱、消失した。Ⅱ型コラーゲンmRNAのシグナルは、増殖細胞層と成熟細胞層の境界部から急速に現れ、成熟細胞層を通して明瞭に認められ、細胞の肥大化とともに減弱、消失した。X型コラーゲンmRNAのシグナルは、成熟細胞層深層の肥大化を始めた細胞に現れ始め、肥大細胞層を通して明瞭なシグナルを認めた。また、肥大細胞層直下の骨髄腔に存在する細胞の一部でも同mRNAのシグナルを認めた。

3) 各コラーゲン遺伝子発現の増幅変化：I型コラーゲン、Ⅱ型コラーゲン両遺伝子の発現様式は、5週齢まで大きな変化はなかった。両コラーゲンmRNAのシグナルは、7週齢から9週齢にかけて明らかに減弱を示し始めた。X型コラーゲンmRNAにおいては、5週齢になると成熟細胞層では極めて弱いシグナルしか認められなくなり、9週齢になると7週齢まで明瞭に認められていた肥大細胞層でのシグナルが激減に消失した。

【まとめと考察】
1) 成長期下顎頭軟骨において、I型コラーゲン遺伝子の発現は関節層、増殖細胞層、成熟細胞層に、Ⅱ型コラーゲン遺伝子の発現は成熟細胞層に、X型コラーゲン遺伝子の発現は肥大細胞層に局在していた。

2) 成長期下顎頭軟骨におけるコラーゲン遺伝子の発現は、軟骨内骨化の分化過程における各層に特徴的な細胞の配列や形態の変化と関連して生じていることが示された。

3) 成長期下顎頭軟骨においてI型コラーゲン遺伝子とⅡ型コラーゲン遺伝子はともに成熟細胞層で発現が認められ、細胞の肥大化に伴い並行して発現が消失していた。このことから、成熟細胞層の軟骨細胞はⅡ型コラーゲン遺伝子とともにI型コラーゲン遺伝子を発現することが示唆された。さらに、13週齢においても両コラーゲン遺伝子の発現がみられる領域が下顎頭軟骨中央部に認められ、成熟した下顎頭軟骨においても両コラーゲン遺伝子を発現する軟骨細胞が存在する可能性が示唆された。

4) X型コラーゲン遺伝子の発現は軟骨内骨化のほぼ終了した9週齢になると急激に消失したことから、その発現は軟骨内骨化と密接な関連をもって生じていることが示唆された。
論文審査結果の要旨

本論文は、軟骨内骨化の進行する成長期マウス下顎頭軟骨において、細胞外基質の主な構成成分であるコラーゲンのうちI型、II型、X型コラーゲンに関して、その遺伝子発現様式をin situ hybridization法により観察し、さらに下顎頭軟骨の成長、成熟過程での遺伝子発現様式の変化を検討したものである。

成長期下顎頭軟骨において、I型コラーゲン遺伝子の発現は関節層、増殖細胞層、成熟細胞層に、II型コラーゲン遺伝子の発現は成熟細胞層に、X型コラーゲン遺伝子の発現は肥大細胞層に局在しており、これらのコラーゲン遺伝子の発現は、軟骨内骨化の分化過程における各層に特徴的な細胞の配列や形態の変化と関連して生じていることが示された。

成長期下顎頭軟骨において、成熟細胞層の軟骨細胞はII型コラーゲン遺伝子とともにI型コラーゲン遺伝子を発現することが示唆された。さらに、成熟した下顎頭軟骨においても両コラーゲン遺伝子を発現する軟骨細胞が存在する可能性が示唆された。

X型コラーゲン遺伝子の発現は軟骨内骨化の終了とともに急激に消失したことから、その発現は軟骨内骨化と密接な関連をもって生じていることが示唆された。

本論文は、下顎頭軟骨の成長機構の解明に価値ある知見を提示しており、申請者は博士（歯学）の学位を得る資格があると認める。