ブドウ, 'マスカット・オブ・アレキサンドリア' の
縮果障害の発生時期と症状

中野斡夫
(附属農場)

Received July 1, 1988

Time of Occurrence and Symptoms of the Necrotic Berry
Disorder in 'Muscat of Alexandria' Grape

Mikio Nakano
(Research Farm)

To control the necrotic disorder of berries in 'Muscat of Alexandria' grape, the time of
occurrence and the symptoms were studied.

1. The disorder occurred about 30 to 60 days after blooming. The period of the disorder
was almost the same as the Stage II of berry development when the roots are actively grow-
ing while the shoots which were pinched previously have not shown any growth in length.
The percentages of affected berries varied considerably by the year, cultural practices and
individual vines.

2. The disorder was classified into two types by symptoms; one was "Speck" and the
other "Shrink".

3. "Speck" mainly occurred from approximately 35 to 45 days after blooming. In an ex-
treme case, almost all the berries were affected with more than a couple of speckles. Usu-
ally, such a symptom did not develop any further. During maturation, the symptom became
obscure, as the skin color of the berries turned to yellowish green, and finally to amber.

4. "Shrink" of the berry, if occurred, was found about 50 to 55 days after blooming. It
was usually found in several berries per a cluster, and sometimes more than a half of the
total berries of a cluster were affected. Because the injury of the berries was severer by
"Shrink" than by "Speck", the commercial loss by the former is more serious than the latter.
The initial symptom of "Shrink" appeared on the shoulder of a berry. The symptom of
"Scald"-type in "Shrink" developed rapidly over the whole berry, and the affected berries
dropped within a few days. On the other hand, the affected portion of the skin of a berry
suffering from "Real Shrink"-type disorder collapsed, and the pericarp just beneath the skin
was hollowed. Most of the berries suffering from "Real Shrink"-type disorder were accompa-
nied by "Scald"-type and dropped sooner or later, but the rest remained on the vine and
the healthy portion of them matured.

緒 言

ブドウ果粒の発育過程で発生する縮果障害は、欧州系の品種に発生しやすく、とくに温室
栽培の 'マスカット・オブ・アレキサンドリア'（以下 'マスカット' と略称）では、激しい
症状の障害が各果房の数10パーセントの果粒にも及ぶことがある。

欧州ならびに米国カリフオルニア州など乾燥地帯では、縮果障害の類例はみられない。わ
が国では古く大井上®や大岡®、大崎7により言及され、水分不足、施肥の過剰、高温などが
原因であろうとされた。その後中川®は、本障害を果皮直下に空洞が生じる "縮果病" と
短期間に果粒全体がうだつように褐変する“日射病”に分け、前者は枝葉からの蒸散により果粒内の水が奪われる一時的な水分欠乏による障害であり、後者は高温による障害であろうとした。しかし、その後高木ら(1983)や間学谷(1984)らは、果実群障害は土壌水分が多い条件でも多発するところから水分不足によるものではなく、以前にはカルシウム欠乏、後にはエチレンによる障害であろうとし、症状の違いは時期によって感受性が違うために起こるのであり、両者は一連の障害であろうとした。

このような、本障害は病害虫ではなく、いわゆる生理障害であるとする説が多い。しかし、原因はなお不明でなく、まして、防除対策はほとんど不明であるといってよい。大粒で房形のよい“マスカット”ブドウの栽培を目指す生産者にとっては、古くからその解決が望まれながらなお未解決の重要な課題である。

本研究は、果実群障害の原因究明とその防除対策の確立を目的にし、まず、障害の発生状況や症状の発達経過を調べた。

材料と方法

材料には、岡山大学農学部附属農場のガラス室に栽培されている平棚、平行整枝、短梢剪定の‘マスカット’樹（1971年植え）を用いた。

果実群障害の発生と根や、新梢の発育との関係を調べるため、1979年8月下旬、樹幹から1.5m離れた位置に穴を掘り、約60cm²の木柵をめ、あらかじめ軌跡を引いたガラスをあてがい、ガラス面に現れた白根をトレースし、その数と長さを調べた。翌年1月16日から加温栽培し、新梢の発育を調査した。また、果実発育と果実群障害の発生時期との関係をみるため、1977年から1980年まで無加温及び加温栽培の‘マスカット’の果実横径を調査し、果実のある障害果実の1房あたり発生数を調査した。1985年には加温室及び無加温室（冷室）で栽培されていた果実の横径を測定するとともに症状別（枝乾）の障害発生率を調査した。なお、障害の発生率は果房ごとにその率（障害果実／全果実）×100、％を算出し、全供試果房の平均値で示した。

1983年から1985年まで、無加温栽培されたガラス室で3作にわたって障害の発達過程を追跡した。障害の発生初期に数果房を任意に選び、すでに発生している症状の輪郭をマークし、その症状の発達や新たな症状の発生を調査した。

症状が特徴の部位に発現するかどうかを調べるため、12枝梗に調整した果房（いずれも着粒数がやや少ない）を用意し、枝梗別に症状の発生数を調査した。また、障害の発生時にすでに発生していた障害果粒にマークし、3日後新たに発生していた症状のみについて、1果粒内での症状の発現部位を調査した。

また、果房に直射光線を当てて“日焼け”を発生させたり、果粒に外傷を付けて傷害を発生させ、それらの症状と果実群障害の症状とを比較した。

結果

1．新根、新梢、果粒の発育経過と障害の発生時期

8月下旬から調査すると、根は9月初めから10月初旬まで活発に発育し、その後停滞した（Fig. 1）。翌年1月中旬から加温栽培すると、2月中旬に発芽を開始し、4月8日ころ開花、8月中下旬収穫となった。新根の活動開始はほぼ発芽期と同時であった。その後、新根の活動はあまり活発でなかったが、開花期を通ると活発化し、障害の発生する果実発育の第Ⅱ期（5月15日〜6月15日ころ）は根の発育が最も活発な時期であった。その後停滞し、収穫期前後には新根がほとんど見られなくなったが、9月中旬、再び秋根の活動がみ
ブドウの縮果障害の発生時期と症状

11月中旬にはほとんど停止した。なお、無加温栽培の場合には4月初旬に発芽したが、この場合も発芽と同時に発根が認められ、開花期以後も新根活動が活発で、果粒発育の第Ⅱ期に発根が停止することはなかった。新根数と新根長はほぼパラレルな動きを示した。

新梢の発育はFig. 2. に示す通りで、ほぼ開花開始後1ヶ月で発芽を始め、新梢の摘心は開花後20日以内で終了した。以後、枝の伸長は停滞し、収穫期直前まで（この時期再び副梢が伸長した）枝の管理を必要としなかった。花穂の整形は開花前に終了した。果房の整形や摘粒は開花後2週間目から始めて、ほぼ10日間くらいで終了した。したがって、障害の発生する第Ⅱ期には新梢の管理、果房の手入れともほとんどしなかった。

1977年から1980年までの4年間計7作において、果粒発育と実害のある障害の発生時期との関係を調べた（Fig. 3.）。果粒肥大の停滞する第Ⅱ期は、早い例では79年の無加温

Fig. 1. Root development of 'Muscat of Alexandria' grape in 1979—1980 season. The vine was cultured in a greenhouse heated from January 16, 1980.

Fig. 2. The growth of shoot and berry, and the time of the disorder. Material was the same as in Fig. 1.
栽培（冷室）の開花後 33 日ころ、遅い例では 77 年の無加温栽培（冷室 2）の 38 日ころから始まった。また、症状は開花後 30 日目ころから発生し始め、60 日目ころまで発生し、第Ⅱ期の前半に多発した。第Ⅱ期の期間も年次、作型で変動し、加温栽培では 25～30 日間、無加温栽培では 30～35 日間くらいであった。障害の発生率は、低い例では 77 年の冷室 2 の約 8％、高い例では 79 年の冷室の約 24％であった。加温、無加温の作型の違いや第Ⅱ期の期間の長短と障害発生率の高低との間には関係が認められなかった。

障害を症状の軽い“シミ”と激しい“縮果”とに大別（後述）し、その発生経過をみると Fig. 4. のようになった。A 樹は多発した樹、B 樹は普通の樹である。両樹とも “シミ”は開花後 37 日目ころから発生し始め、40 日ころには急増していた。B 樹では 44 日以後激減したのに対し、A 樹ではその後も激増し、60 日ころから減少した。また、“縮果”の発生は A 樹では 44 日ころから発生し始め、54 日ころにピークを示したのに対し、B 樹では 52 日ころと遅くから発生し始め、発生率も低かった。

一方、“縮果”の発生経過を“縮果型”、“日射型”の症状別（後述）にみると、“縮果型”は 40 日ころから発生し始めだが 50 日ころまでは少なく、その後短期間に激発した（Fig. 5.）。“日射型”は“縮果型”よりやや遅れて発生し始め、その後発生率は低かった。

2. 症状の発達経過

症状の発現及び発達過程は肉眼で観察するとともに、写真撮影した（Fig. 6., 7., 8.）。

“シミ”：6 月 24 日（開花後 40 日ころ）に果房中央部の果粒 ① の中央に “シミ” としては比較的大きな症状が現われた（Fig. 6., A）。この症状は、その後 7 月 2 日（Fig. 6., B）

Fig. 3. Variation of berry growth and the number of disordered berries in heated or non-heated greenhouses from 1977 to 1980.
までほとんど拡大しなかった。このように、“シミ”の症状は発現時からほとんど進展しないことが多かった。一方、同じ果房の他の果粒②③④で6月24日に認められた症状は、いずれも果粒の背側に発現しており、翌日からこれらは“縮果”症状となり果粒は大きくくぼみ褐変したが、7月2日まで樹上にあった。

“縮果（縮果型）”：6月20日（開花後49日ころ）果房背側の果粒①②とやや右下の果粒③に褐変、陥没が認められた（Fig. 7., A）。この陥没部分は28日（Fig. 7., B）まで

Fig. 4. The time of appearance of “Speck” and “Shrink” symptoms.

Fig. 5. Berry growth and the percentages of berries with different type of symptoms.
褐変度は増したが、症状の拡大はほとんどなかった。しかし、7月3日（Fig. 7., D）から7日（Fig. 7., E）にかけて左の果粒①は萎縮し、脱粒寸前の状況を呈し、右の果粒②はあまり症状を拡大しないうちに脱粒していた。右下の果粒③では7月7日まで症状の進展がなかった。一方、6月30日（Fig. 7., C）に現れた、最も左の障害果粒④は症状が進展し、7月7日には脱粒していた。7月3日から7日にかけて右側上下の果粒⑤⑥にも症状が現れ、果粒⑤は初期の状態のままであったが、果粒⑥は“縮果型”と“日射型”とを併発した症状となり脱粒寸前の状態にまで進展していた。このような“縮果型”の“縮果”には果皮が陥没しても症状はそれ以上進展せず、収穫時期まで樹上に着果しているものと、“日射型”症状とを併発したように果粒全体にまで症状が進行し、間もなく脱粒するものがあった。したがって、初期段階ではその症状の特徴を現わしておらず、“縮果型”か“日射型”かに分けることはできないであろう。

“縮果（日射型）”：6月13日（開花後43日ころ）に中央の果粒①に褐変が認められた（Fig. 8., A）。この症状は14日（Fig. 8., B）から17日（Fig. 8., C）にかけて褐変度を増していった。また、別の果房では6月20日（開花後49日ころ）中央の果粒②に褐変が認められ（Fig. 8., D）、6月23日（Fig. 8., E）には果粒先端部を除き褐変度が増し、大きくしわが寄った。しかし、6月27日（Fig. 8., F）にもなお、そのまま樹上にあり小果梗もミイラ化していた。さらに、23日から27日の間に新たに隣接の果粒③にも症状が発生し、27日にはその小果梗も褐変していた。このように“日射型”は、その症状が急速に進行して果粒はうっったように褐変し、多くは間もなく脱粒した。脱粒しなかった果粒も健全

Fig. 9. Development of the symptoms and the growth stages of berry.
Fig. 6. Development of the "Speck" symptom. A; June 24, B; July 2, in 1985.
①; "Speck", ②, ③ and ④; "Shrink".

Fig. 7. Development of the "Real Shrink"-type symptom.
A; June 20, B; June 28, C; June 30,
D; July 3, E; July 7, in 1984.
3. 果房及び果粒内における症状の発生部位
“シミ”及び“縮果”症状の発生は、果房の肩部で多いようにみえるが、それは肩部の着
粒数が多いためであって、百分率では果房全体に散在し、特定の支梗にかたよって発生して

Fig. 8. Development of the “Scald”-type symptom.
A; June 13, B; June 14, C; June 17, in 1983.
D; June 20, E; June 23, F; June 27, in 1984.

Fig. 12. Injury of berries by cutting, and the “Shrink” symptom.
いるとはいえなかった（Fig. 10., A）。しかし，“縮果”が極端に多発した果房では、果房の肩部に多発している場合が多く、とくに特定の枝梗に集中して発生していることが多かった（Fig. 10., B）。つきに、3日間新たに発生した症状の1果粒内での部位を、基部、中部、先部に分けて調べると、“シミ”はどの部位にも同程度に発生していたが、“縮果”は果粒の基部にのみ発生していた（Fig. 11.）。

4. 日焼け，その他の人為的傷害との関係

第Ⅱ期の後半に摘葉し、果粒に強烈な光線を急に当てると“日焼け”を起こした。この症状は“日射型”の症状に類似しているが、透き通った淡黄色であり、かなり期間が経たない

![Fig. 10. Diagram showing the regions of disordered berries on clusters.](image)

![Fig. 11. Percentages of the symptoms appeared on different parts of berries.](image)
と褐色にならなかった。“日射型”の症状は早くから淡褐色であり、とくに障害部の周囲を管束は当初から濃い褐色を呈し、両者は明らかに区別が可能であった。

障害の発生する前に果皮を綿でこすったが、果粉の発達が阻害されただけで障害は現われなかった。また、果肉組織にまで及ぶ切り傷を付けても、病原菌の感染が無い限り果粒は発育し、種子が外から見えるほど傷口が大きくなっても正常に成熟した。この際、傷をつけた以外のところには“縮果”が発生することはなかったが、傷に由来しているとは思えなかった（Fig. 12.）。さらに、果粒を部分的に押しつぶすと“縮果”に似た状態を見えたが、この場合症状の進行はなかった。第Ⅱ期の始めに硬度計を用いて2.5 kg/cm²の力で果粒を押すと、果粒の中にはこの圧力に耐えるものとつぶれるものがあった。耐えたものはその後なんら異常はみられず、つぶれたものは表面にしぼれを生じ、間もなく黄褐色に変色した。しかし、この症状はその後8日経ってもほとんど変化しなかった。

考覧

縮果障害のうち、症状の軽い“シミ”はおもに第Ⅰ期末から第Ⅱ期中ごろにかけて発生し、発生率は極めて高く、1果粒上に数ヶ所もみられることがある。一方、症状の激しい“縮果”は第Ⅰ期の中ごろ以後から発生し始め、第Ⅲ期の始めごろには終息した。この症状をさらに“縮果型”と“日射型”に分けると、“縮果型”の方が“日射型”よりもやや早く発生し、発生率も高かった。通常の栽培ではほとんどが“縮果型”（“日射型”との併発型を含む）である。このように、縮果障害の発生には果粒の発育ステージが関係しており、その原因解明には特に第Ⅱ期の発育生理を重視する必要がある。

縮果障害の症状の発達過程を模式的に示すとFig. 9. のようになる。

“シミ”は果粒上における発現部位が一定せず、比較的小さな症状が多く、発現時からほとんどその症状が進展しない。また、第Ⅲ期に入って果粒の緑色がうすれ、淡黄色緑色ないし琥珀色になってくると、外観的には分かりにくくなる。したがって、栽培上の実害はさほど大きくない。

“縮果型”の症状は大きく、したがって実害も大きい。症状はまず果粒の基部に現れ、急速に進行する“日射型”とそうでない“縮果型”がある。“縮果型”の果粒は障害部分が大きく陥没する。症状が明確でなかったものは成長期まるで着粒しており、健全部分は成熟する。しかし、症状が進むと果粒先端部を残し全体に及んだもの（併発型）は、しばらくすると脱粒する。とくに果粒基部の全域が早期に陥没したものは脱粒が早い。“日射型”の障害果粒は、2～3日以内にその症状を急速に進展させ、陥没は起こらないで多くは脱粒する。ただし、そのようなものでも長期間樹上に残った場合は、しばしば萎縮するが“縮果型”のように陥没せず大きさないしを生じて、小粒果ともどもミイラ化する（Fig. 8. F）。また、“縮果型”と“日射型”との併発型の症状を示す障害果粒は多数見られ、両者の厳密な分類は困難である。ただし、“縮果型”と“日射型”では、“日射型”の方が症状の進行が速いので、併発型の症状は、先に“縮果型”症状を示した後、“日射型”症状をも示すものと推察される。同様のことは“シミ”と“縮果”との間にみられ、“シミ”が発生している果粒に後から“縮果”が発生することもしばしば観察される。したがって、本論文では、“シミ”と“縮果”とは発生時期も形態もかなり異なっているので別の症状として扱った。また、“縮果”の内で“縮果型”と“日射型”をあえて区別した場合には、併発型の症状は“縮果型”として扱った。このように、縮果障害はおおむね第Ⅱ期に発生するといえるが、“シミ”と“縮果”では外観的にも異なり、その進展状況や発生時期にも差異がある。したがって、症状の発現機構にもなんらかの差異があるのではないかと考えられる。
一般に「縮果」は果房の肩部に多いといわれている。そこで特定の発現部位が認められるかどうかを調査したところ、「シミ」では特定の部位をあげることはできなかった。「縮果」の1果房内の発生部位は、平均的な果房では特別できない。しかし、多発した果房では肩に近い特定の支桿に集中することが多かった。なお、1果粒内では、果粒の基部に発現した。

岡山地方では「日射型」の症状を単に「日射」と呼ぶことが多く、光線の直射が原因ではないかともいわれている。しかし、必ずしも日の良く当たりところだけに発生するとは限らず、果房の内部にある果粒でも発生するし、1果粒内でも下側、すなわち果房内部側の日陰から発現することも多い。また、本実験で第Ⅱ期に急に強光をあてた場合、果房の肩の果粒に「日焼け」を起こしたが、その症状と「日射型」の症状とは区別が可能であった。これら的事実から、「日射型」の障害が「日焼け」であるとは考えられない。また、本実験の結果から、縮果障害と摘粒作業時における可能性のある外傷とは無関係であると推察される。

以上のように、縮果障害はおそらく果粒発育の第Ⅱ期に発生する障害であり、発生時期や発現部位の違いから大きく「シミ」と「縮果」に分けられる。それらの発生原因はいずれも内在的なものであろうと推察されるが、詳細については今後検討したい。

摘要
縮果障害の発生率は年度、作型、樹によって大きく変動した。しかし、発生時期は概して一定しており、果実発育の第Ⅱ期であった。第Ⅱ期の始め（開花後35～45日）ころには、「シミ」と呼ばれる症状が、第Ⅱ期の終わり（開花後50～55日）ころには「縮果」と呼ばれる症状が多発した。なお、縮果障害は「日焼け」や人為的な外傷によって発生する障害ではなかった。

症状の特徴と発達経過は次のようであった。「シミ」は果房及び果粒における発生部位が一定しない。症状は比較的小さく、あまり進展しないため実害はきほん大きくない。「縮果」は多発した場合、果房の肩部（基部よりの部分）の特定の支桿に集中してみられることが多い。果粒上では基部に発現する。「縮果」の症状は比較的大きく実害も大きい。「縮果」には症状が急速に進展する「日射型」と、そうでない「縮果型」とある。「日射型」症状の果粒は、うっただいに褐変し、まもなく脱落する。「縮果型」症状の果粒では、障害を受けた部分は褐変し果皮が大きく陥没するが、症状はあまり進展せず、脱落せず、健全部分は成熟する。一般には、このような典型的な症状よりも併発型の症状を示すことが多く、両者の密的な区分は困難である。

文献
1) 星川三郎：関際谷徹・長谷川嘉人：農及園，60，87〜88（1985）
2) 関谷徹：園学要旨，昭52秋，98〜99（1977）
3) 関谷徹：園学要旨，昭53秋，62〜63（1978）
4) 関谷徹・高木伸夫・田村史人：果樹試報E，4，53〜61（1982）
5) 中川昌一：葡萄果実の生理的障害に関する研究，京都大学学位論文（1961）
6) 大井上操：葡萄之研究（復刻版），742〜838，博友社・東京（1970）
7) 大 تاريخ：果樹栽培技術，552〜650，朝倉書店・東京（1948）
8) 大田樹：果物月報（岡山県経済連），307，23〜27（1937）
9) 高木伸夫・森本正康：園学要旨，昭49春，132〜133（1974）
10) 高木伸夫・森本正康・関谷徹：園学雑，50（2），185〜191（1981）
11) 鳥津博高：果樹の生理障害と対策，誠文堂新光社・東京（1968）