This thesis discusses the problem of on-line rejection of unknown bounded disturbances in linear time-invariant finite dimensional systems. The objective of the dissertation is the problem of rejection of unknown disturbances in control systems using adaptive estimation techniques. The adaptive observers for estimation of periodical disturbances are briefly reviewed and a new formula for calculation of the estimate of unknown sinusoidal disturbances without referring to a transformation matrix is presented. An adaptive design scheme for rejection of unmeasurable disturbances is proposed. The description is based on coprime factorization over the set of stable proper rational functions which has far reaching consequences for the dynamics of the adaptive algorithm. The stability of the overall system in sense of Lyapunov stability theory is proved. Further, the design of adaptive observer is addressed to the problem of suppressing the influence of unmeasurable disturbances in non-minimum phase plants. The problem of designing a model reference adaptive controller which is robust to disturbances also considered. It is shown that when the system is augmented by the model of
the unknown disturbance, it is possible to design a controller based on the exact model matching theory. A classification of several existing model reference adaptive control design methods is done. At last, the applicability and the performance of the adaptive disturbance rejection design presented in this thesis is proved through an experimental example.

論文審査の結果の要旨

サーボ系における摩擦外乱など制御系に混入する外乱に対して、その影響が制御結果に現れないように制御することは、制御系の設計において重要な課題である。特に、回転動作を行うサーボ系等において外乱は周期的となり、外乱モデルに未知パラメータを含み、従来の制御方法では、計算や構成が複雑で有効に外乱制御が行えず、サーボ系などの高速度の制御には適していなかった。本論文では、未知外乱推定制御を行う，計算量の少ない適応オプサーバと、構造の簡単な外乱ロバスト適応制御方法を提案し、各手法について安定性を理論的に証明し、さらに、提案した適応オプサーバをダイレクトドライブサーボモータ制御に用いた制御実験を行っている。

本論文で提案している外乱推定制御手法は次の通りである。(1) 従来の外乱推定オプサーバでは標準系への変数変換が必要であつたが、外乱変換式を求め変数変換が必要となる構成を求めている。(2) 伝達関数の既約分解表現による2自由度補償器から求めた外乱推定オプサーバにパラメータ同定則を付加して、外乱変換式も不要となる適応オプサーバを求めている。(3) 制御対象に仮想的なフィードフォワードを付加して強正実系とすることにより、2段階のフィルタが必要であった前項の適応オプサーバのパラメータ同定則において、1段階のフィルタのみとするさらに計算量の少ない構成を与えている。(4) 外乱ロバストモデル規範型適応制御系の構成において、従来の多項式に基づく設計法では、多数の設計多項式が現れ複雑であったが、既約分解表現を用いることにより、設計パラメータの性質の明らかなる構成を与えている。また、上述の第2項の構成法による適応オプサーバを、ダイレクトドライブサーボモータの制御に応用し、アーム先端の重りの重力による周期外乱を推定制御する実験を行い、従来のフィードバック手法に比べてより有効に外乱の影響を除去している実験結果を得ている。

以上のように、本論文は、未知外乱推定制御を行う制御系の設計法を新しく提案し、理論的、実験的検討により本手法の有効性を示しており、工学的、学術的意義は大きい。これらの成果は学術誌などに掲載され、高い評価を得ている。よって、本論文は学位に値すると認められる。