学位論文内容の要旨

近年、酵素および微生物など生体触媒を用いる不斉合成反応は絶対配置を正しく制御する手段として、その基礎的および応用的な研究が盛んになっている。そのなかで、発酵パン酵母を用いる不斉還元反応は、入手および取り扱いの容易さから、数多くの反応例が報告されている。しかし、得られた還元生成物の立体選択性については、必ずしも満足する結果ではない。

本論文では、親水性と疎水性の置換基をもつ脂肪族ケトン酸を基質とし、パン酵母の還元酵素を特異的に反応させることにより、高立体選択性の反応を開発した。すなわち、1）β－、γ－およびδ－ケトン酸より光学的に純粋なβ－ヒドロキシエステル、γ－およびδ－ラクトンを導き、その反応の詳細を検討した。2）電子指向性基である塩素原子がプロキシル化カルボニル基の近傍にある場合のパン酵母還元について考察した。3）α－メチル－β－ケトン酸から高エナンチオおよび高ジアステレオ選択性還元を行なった。4）この反応に関与する酸化還元酵素を単離し、その酵素化学的特性をも明らかにした。

論文審査の結果の要旨

酵素および微生物など生体触媒を用いる不斉合成反応は、立体配置を正しく制御する手段として、その基礎的および応用的な研究が盛んになっている。そのなかで、発酵パン酵母を用いる不斉還元反応は、入手および取り扱いの容易さから、数多くの反応例が報告されている。しかし、得られた還元生成物の立体選択性については、必ずしも満足すべき結果ではない。
渡部氏は、親水性と疎水性の置換基をもつ脂肪族ケト酸を基質とし、パン酵母の還元酵素を特異的に反応させることにより、高立体選択的反応を開発した。業績の要点を列挙すると次のようになる。

(1) β-, γ-およびδ-ケト酸より光学的に純粋なβ-ヒドロキシエステル、γ-およびδ-ラクトンを導き、光学活性な生理活性物質の合成に成功した。

(2) 電子吸引性基である塩素原子がプロキサルなカルボニル基の近傍にある化合物について不斉還元に成功した。

(3) α-メチル-β-ケト酸から高エナンチオおよび高ジアステレオ選択的に還元することに成功した。

(4) 脂肪族ケト酸の還元酵素をパン酵母より単離し、その酵素化学的特性を明らかにした。

本論文の研究は、生体触媒を用いて、高立体選択的な有機合成反応を開拓し、さらに酵素を単離してその基礎的な反応性についても考察を加え、学術的に寄与すると考えが大きく、実用性も併せ持っている。

よって、本論文を学術博士の学位論文として価値あるものと認める。