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1 Introduction 

There are several popular packages for statistical analysis, but most of them require that 

the users must have a sufficient statistical knowledge. Though, even the user who has 

a little statistical knowledge can use those packages for statistical analysis, and he gets 

some results. But they may have no meaning in statistical analysis. According to growing 

of the computer environment, those packages are more popular and such 'miss using's are 

more. 

On the other hand, many expert systetns have been developed recently, on various 

domains. An expert system has some knowledge, and make some decision instead of a 

user. Also, in statistical analysis, a number of expert systems have been developed or 

proposed. They are designed for the users who have a little statistical knowledge, and 

when such users use the system, it supports and advises users for making no miss using. 

Discussions with respect to the expert system for statistical data analysis are found in 

REX (Gale, 1986), Student (Gale, 1986), RASS (Nakano et al., 1990), SCSH (Hayashi, 

1993) and SCSK (Hayashi and Tarumi, 1994) 

An expert system consists of a knowledge base, an inference engine and a calculation 

engine. A calculation engine executes an analysis and makes a result according to a deci­

sion which was made by an inference engine. Therefore, implementations of a knowledge 

base and an inference engine are important to develop an expert system. Discussion of 

a knowledge base and an inference engine are found in previous system and in Thisted 

(1986), Spiegelhalter (1986), Minami et al. (1993a, 1993b, 1994) and Yanagi (1994). 

As another type of approach, Afifi and Clark(1990) have shown that attributes of 

variables were important factors in deciding on an appropriate analysis. According to the 

distinction of the variable type (continuous or discrete) and the role of variable (dependent 

or independent), data are classified into several groups. That is to say, if we have sufficient 

information for each variable, we can select an appropriate method for such data. Actually, 

this concept is similar to the Object Oriented Programming (OOP) style. In the OOP 

design, the group is denoted as a class, and the relationship of the classes is constructed 

in term of hierarchical structure. 

Classes of statistical data are classified according to the attributes of variable, and 

classes of matrix and classes of result are defined properly. In our proposed expert sys­

tem, all values, graphics and texts are considered as instances of a certain class and the 

statistical analysis is a 'method' in the class, and it is activated by 'message sending' styl~. 
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In this thesis, we discuss a knowledge base, an inference engine and a calculation 

engine for developing an expert system which make results of statistical analysis from 

sufficient information of the data automatically. 

In chapter 2, we explain an Object-Oriented Programming technique and define Ma­

trix classes for matrix calculation using an OOP technique. And we develop a system 

for matrix calculation using Matrix classes and MAT language for the systern. Matrix 

calculation are basic operations for statistical data analyses, Matrix classes are used in 

calculation engine. 

In chapter 3, we define Data classes which are also used in calculation engine. These 

classes have 'methods' which mean statistical data analysis methods. The matrix classes 

which are defined in Chapter 2, are used to implement these methods. And we develop 

the 'Stat' system for statistical data analysis using Data classes and Matrix class. The 

MAT language can be used in 'Stat' system, it is possible to apply a new analysis method 

which is not implemented in 'Stat' system by programming with MAT language. 

There are three major models to implement of an inference engine, "frame model", 

"network model" and "blackboard model". But in chapter 4, we propose a new model 

using an OOP technique. From using the model, classes for knowledge can be used both 

a knowledge base and an inference engine, and such a knowledge can be used in other 

statistical system. We define 'Knowledge class' in this chapter, and show an expression 

of some a knowledge using these classes. 

Last, in chapter 5, we explain a method for detecting influential subjects using the 

clustering method as an example of knowledge. And we explain a clustering method using 

the linked lines rotation graphics, which is the one rnethod for clustering. 
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2 Object-Oriented Progt·arnrning and 
Matrix Classes 

2.1 Introduction 

An object-oriented programming (OOP) technique is a new paradigm of programming 

technique and it aims to reduction of work of programming. This technique dose not only 

give a boon for programmer, but also for the users vvho use a system programmed using 

the OOP technique. 

In section 2.2, we explain the the OOP technique simply, and in section 2.3, we define 

'Matrix classes' as example of the OOP technique. After we define Matrix classes, in 

section 2.4, we design MAT language for matrix calculation using Matrix classes and 

develop MAT system with this language. 

2.2 Object-Oriented Programming 

There are n1any useful concepts in the OOP technique that can be utilized to create 

a hierarchical class structure. We show five main concepts for understanding the OOP 

technique. 

Class: A class is concept like a set. But relationship between two classes is allowed 

only exclusive or conclusive. If Class B is conclusive to Class A, Class A is called 

super class of Class B and Class B is called subclass of Class A. Hence, classes are 

illustrated by tree structure. A class on top of tree structure is called Object class, 

and only this class has no super class. Every class has methods and properties. In 

this thesis, a name of a class is started by capital character. 

An element of certain class is called instance of that class. 

Method: A method is concept like a function or a subroutine in ordinary programming, 

but methods are characterized by the class. Hence, after the class is determined, 

those methods are only limited to that instance of particular class. In this thesis, a 

name of method is started by small character. 

It is called' send message' to execute a method. We can get information of properties 

of instance or change properties only by sending message. 
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Polymorphism: There are some methods which have same name but we obtain different 

results since they belong to different classes. Therefore, it is possible in some classes 

to define a method which is similar but different .. It makes reduction of work to define 

methods have same name and similar effect in several classes, because programmer 

need not consider difference of classes. 

Inheritance: Since subclass inherits all the properties and methods of its super class, we 

define the method used in most of the classes based on super class only once. Off 

course, we can redefine the method which inherited from its super class in certain 

subclass (overriding). 

Encapsulation: We must consider that classes mean machine parts. When we add a 

new method to a certain class, we need to change only the program of the class and 

not necessarily modifying other classes without special cases. Also, when we define 

new subclass, we need to write only the prograrn of the subclass. It is simple to add 

some methods or to modify them. 

The OOP technique has more useful feature, refer to Cox (1986), Wiener and Prinson 

(1988) and Prinson and Wiener (1991). 

2.3 Matrix class 

Because matrix calculation is necessary for almost statistical analysis method, we define 

Matrix class first. It has two subclasses 'Vector class' and 'SquareMatrix class' and the 

later includes 'SymmetricMatrix class' as its subclass. In Figure 2.1, we show a tree 

structure of Matrix class and its subclasses. 

Matrix: This class is a set of n x m matrices. 

method: transpose, product, addition, subtraction, combine, sweep out and other 

matrix operations and functions 

Vector 

Matrix-[ 

SquareMatrix --- SymmetricMatrix 

Figure 2.1: Matrix class and its subclass 
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Vector: This class is a set of vectors. For example mean vector is belong to this 
class. 

method: inner product 

SquareMatrix: This class is a set of square ( n x n) matrices. 

method: determinant, inverse 

SymmetricMatrix: This class is a set of symmetric matrices. For example 

variance-covariance matrix and correlation matrix are belong to this class. 

method: calculate eigenvectors and eigenvalues 

Off course, from inheritance concept of the OOP, all subclasses of Matrix class have 

matrix operation and function methods defined in M:atrix class. 

2.4 MAT language 

We design the programming language 'MAT' for matrix calculation as the application of 

the 'Matrix class'. It is used when the matrix calculation of some statistical analyses is 
necessary. 

2.4.1 Feature of MAT 

There are feature of MAT following. 

Definition of matrix Put comma(,) after each element and separate each rows with 

semi-colon (;). For example, 

(1, 2, 3; 4, 5, 6) 

means 

( 
1 2 3 ) 
4 5 6 . 

Matrix operator Following matrix operator can be used. 

+ 

. or space 
I 

matrix addition 
matrix subtraction 
matrix multiplication 
transpose of matrix 
matrix exponent, only positive integer or -1 are allowed. 

- 5-



Table 2.1: Matrix functions 

Let A, B are matrices, x is vector and i , j, n are integer. 

inverse(A) 
det(A) 
rank(A) 
trace(A) 
transpose(A) 
rows(A) 
columns(A) 
hcombine(A, B) 

vcombine(A, B) 

eigenvalues(A) 
eigenvalues(A, n) 
eigenvectors(A) 
eigenvectors(A, n) 

sweepout(A, i, j) 

norm(A) 
diag(A) 

diag(x) 

ident(n) 
one(n, m) 

one(n) 

zero(n, m) 

zero(n) 

return inverse matrix 
return determinant 
return rank 
return trace 
return transpose 
return the number of rows of matrix 
return the number of columns of matrix 
return combined matrix of two (horizontal), 
i.e. hcombine (A, B') = ( A B ) 
return combined matrix of two (vertical), 

i.e. vcombine (A, B)= ( ~ ) 
return eigenvalues of symmetric matrix A 
same, but only n values from largest 
return eigenvectors of symmetric matrix A 
same, but only n vectors from largest eigen­
values 
return the matrix swept out with pivot (i, j) 
element 
return L 2-norm of matrix 
return a vector whic:h elements are diagonal 
elements of the matrix A 
return a matrix which diagonal elements are 
elements of the vector x and other elements 
are 0 
return n x n identical matrix 
return an x m matrix which all elements are 
1 
return an x n matrix which all elements are 
1 

return an x m matrix which all elements are 
0 
return an x n matrix which all elements are 
0 
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Element For a matrix A, (i, j) element of A is represented A [i, j]. 

Matrix functions Matrix functions are shown Table 2.1. 

Scalar operation and its extension Following scalar operation can be used and ex­

tend to matrix operation. For n x m matrix A = ( aij) and B = (bij), n x 1 vector 

x = (xi), 1 x m vector y = (Yi) and scalar z, definition of operation is 

AoB = (aijobij), BoA= (bijoaij), 
Aox = (aijoxi), xoA = (xioaij), 
Aoy = (aijoyj), yoJl = (yjoaij), 
Ao z = (aijoz) , z oA = (z oaij), 

where o is one of+, -, *, /which mean respectively addition, subtraction, multi­
plication, deviation. 

Extension of scalar functions Extension of scalar functions (sin, log, exp, ... ) are 
defined by 

function (A) = ( function ( aii) ) . 

Programming statement MAT has following control statements. 

conditional statement 'if' statement. Syntax 'if' statement are shown in follow­
ing. 

if condition then 
(statements condition is true) 

end if 

if condition then 
(statements condition is true) 

else 
(statements condition is false) 

end if 

repetition statement Statement are shown in Following. 

for(initialize;condition;re-initialize) 

end for 

repeat while condition is true 

while(condition) 

end while 

repeat while condition is true 
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do 

while(condition) 

repeat while condition is true 

eachelernent(variable,matrix) 

end each 

repeat for each element of matrix into variable 

eachrow(variable,matrix) 

end each 

repeat for each row of matrix into variable 

eachcolumn(variable,matrix) 

end each 

repeat for each column of matrix into variable 

User interface functions User interface is satisfied by functions in following. 

print(variables or string, ... ) 

show variable or string 

input(variable) 

put into variable by user 

definition of function Definition of user function can be present. following show 
syntax of function 

function function_name(list of variables) 

return(value) 

end function 

The return value of a function is defined to use return statement, and not exe­

cute all statements after that. Multiple 'return' statement with 'if' statement 
can be used. 
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Figure 2.2: MAT system 

We develop MAT system with MAT language (Figure 2.2). The systen1 is developed 

in NeXT computer with Objective-C language, InterfaceBuilder, ProjectBuilder and class 

library 'Appkit' (Application Kits). To get information of these tools, refer to NEXTSTEP 

Developer's Library (1993). 

2.4.2 Comparison with other language for matrix calculation 

There are some famous packages or languages for matrix calculation. VVe show comparison 

of our MAT language with Mathematica, SAS/IML and S, in Table 2.2 to 2.6. A space 

mean* in Mathematica, and a space mean . in our ~1AT language. 

2.4.3 Example of MAT language 

We show function FA (Factor analysis) in Figure 2.~~ for example grogrmn of MAT lan­

guage. An input variable datacorr is a correlation rnatrix of some multivariate data and 

an output of this function is a factor loading vectors. In executing this program, system 

shows a list of eigenvalues and requests to input the nurnber of factors. 
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Table 2.2: Operators between matrix and matrix 

MAT Mathematica SAS/IML s 
Matrix product * %*% 

Sum( elementwise) + + + + 
Difference( elementwise) - - - -

Product ( elementwise) * * # * 
Quotient ( elementwise) I I I I 

Table 2.3: Operators between matrix and vector 

MAT Mathematica SAS/IML s 
Matrix product * %*% 

Sum( elementwise) + + X X 

Difference( elementwise) - - X X 

Product ( elementwise) * * # X 

Quotient( elementwise) I I X X 

Table 2.4: Operators between vector and vector 

MAT Mathematica SAS/IML s 
Inner product %*% 

S urn ( elemen twise) + + + + 
Difference ( elemen twise) - - - -

Product ( elemen twise) * * # * 
Quotient( elementwise) I I I I 

Table 2.5: Operators between scalar and matrix, vector 

MAT Mathematica SAS/IML s 
Sum( elementwise) + + + + 

Difference( elementwise) - - - -

Product ( elementwise) ., * * * * 
Quotient( elementwise) I I I I 
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Table 2.6: Operators between scalar and scalar 

MAT M athematica SAS/IML 
Sum( elementwise) + + 

Difference ( elemen twise) - -
Product ( elementwise) ., * * 
Quotient ( elementwise) I I 

function FA(datacorr) 
n=columns(datacorr) 
cc=data_corr 
cc_inv=inverse(datacorr) 
eigen_cc=eigenvalues(datacorr) 

print( 11 eigenvalues") 
for(i=1;i<=n;i=i+1) 

print(eigen_cc[i]) 
end for 
print( 11 input number fo factor ") 
input(m) 

diags=1-1/diag(cc_inv) 
do 

for(i=1; .i<=n;i=i+1) 
c [i, i] =diags [i] 

end for; 

eigenval=eigenvalues(c,m) 
eigenvec=eigenvectors(c,m) 
aHat=eigenvec*sqrt(eigenval) 

+ 
-

* 
I 

while(norm(diag(c)-diag(aHat aHat'))<0.00001) 

return(aHat); 
end function 

s 
+ 
-

* 
I 

Figure 2.3: A program of FA (factor analysis) written in MAT language 
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2.5 Conclusions 

In this chapter, we explained what is the OOP technique and its usefulness. And we 

defined Matrix classes and MAT language. Because of encapsulation of classes, we can 

use Matrix class to develop other systems. Then we use this class in following chapters. 

We develop the MAT system in NeXT computer, because NEXTSTEP which is the 

only OS programmed using the OOP technique, in that time. 

In following chapter, we define classes for statistical data to develop a data analysis 
system using the OOP techniques. 

- 12-



3 Classes for Data Analyrsis 

3.1 Introduction 

In chapter 2, We show that the OOP technique is useful technique for programming. 

We planed to develop a statistical software using the OOP technique. We use five basic 

concepts which are explained in chapter 2 as follows: 

Classes: Statistical data are classified by means of tree structure based on the attributes 

of variables. After the classification, the appropriate method of analysis is deter­
mined for such data class. 

Methods: For any statistical data class, methods are defined as a statistical analysis or 

a data manipulation method. 

Polymorphism: For example, a method named 'regression' means regression analysis 

when the data set belongs to 'Continuous Variable class' and it means quantification 

method I when the data set belongs to 'CategoricalVariable class'. So, the user can 

use our system with a little vocabulary and select a message consciously according 
to data's class. 

Inheritance: For example, if a method 'printing basic statistics' is defined in a super 

class, every subclass of the class or its subclasses have the same method. 

Encapsulation: Because it is easy to add some methods or to modify them, it is also 

easy to add new statistical analysis method or new class for statistical data. 

In this chapter, we define various classes for statistical analysis, 'Value class' for basi­

cally data and 'Variable Vector class' and 'Data class' ~or statistical data and 'Result class' 

for output of statistical analysis and other classes (Graphics class, Text class, Distribution 

Function class, etc.), but we show four mainly classes following. 

Remark: There are two kinds of methods, one is a factory method (class method) to 

generate an instance, the other is an instance method to operate to the instance. Every 

class must have at least one factory method, but most of factory methods are 'new'. So 

that, in this thesis, we show classes and instance methods but omit factory methods. 
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Value 

-[ 

NonNegativeFioatValue 

FloatValue 

EigenValue 

lntValue 

DummyValue 

StringValue 

Figure 3.1: Value class and its subclasses 

3.2 Value class 

In the first, we treat the following values. The instance of this class has not only one 

value but also has a flag to indicate whether the value is missing value or not. We show 
a structure of this classes in Figure 3.1 

FloatValue: It is an ordinal floating value. 

NonNegativeFloatValue: It is used to a case weight variable. 

EigenValue: This class is used in principal component analysis (PCA) , factor anal­

ysis (FA) or other analysis using eigenvalue problem and has information of 
proportion. 

Int Value: It is an ordinal integer value and used for the item-category variable. 

Dummy Value: It takes only zero or one value. 

StringValue: It is an ordinal character string and used for name labels. 

3.3 VariableVector class 

Data of one variable. In Figure 3.2, we show a tree structure of Variable Vector class and 

its subclasses. Because there are many other subclasses and we design new subclasses 
according to necessity, we show only six su bel asses as follows. 
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Continuous-
Variable 

data 

mean 
variance 
etc. 

Variable Vector 

y 
Categorical-

Variable 

data 

maximum 
minimum 
frequency 

data 

Dummy-
Variable 

data 

frequency 

J 
W'eight-
Variable 

data 

total 
weight 

1 
Eigen-

Vector 

data 

eigenvalue 

Loading­
Vector 

data 

eigenvalue 
proportion 

Figure 3.2: Vairable Vector class and its subclasses 

- 15 -



Variable Vector: It has data (value), the variable name and the number of cases and its 

subclasses are Continuous Variable class, CategoricalVariable class, Dumn1yVariable 

class and so on. 

ContinuousVariable: When a variable type is continuous values, generate a in­

stance of this class. To add to the all information of Variable Vector class, this 

class have 'basic statistics (mean, variance, maximum value, minimum value, 
etc.)' in it. 

method: convert to a categorical variable, calculate frequency. 

CategoricalVariable: Discrete value with maximum value, minimum value and 
frequencies for each value. 

method: convert to a dummy variable or a continuous variable. 

DummyVariable: This class is used for dumrny (0/1) data and has frequencies. 

method: convert to a continuous variable. 

WeightVaribale: All values are non-negative and this class has total value. This 

class is used a weight variable for each individual. 

EigenVector: This class is for eigenvector with eigenvalue. 

LoadingVector: This class is for loading with proportion and eigenvalue 

which inherited from EigenVector class. 

3.4 Data class 

This class is a data for statistical analysis. Before analysis, you must make an instance 

of this class or subclasses. In Figure 3.3, we show a tree structure of Data class and its 
subclasses. 

Data(n x p): This class has information of the number of cases (n), the number of vari­

ables (p) and instances of VariableVector class, weight variable and labels of the 

cases of data. Data class is classified by the nurnber of variables. 

method: variable transformation, combine other data, split to other data, delete 
some variables, display basic statistics. 

DataOneVariable(n x 1}: The data belong to this class has only one variables. 

This class has information of the number of variables, weight variable and 
labels. different from Variable Vector class. 
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DataOneVariable 

[[[JJ 
DataNoDependent 

'~ 
DataNoDependent-

TwoVariables 

ITIDIIJ 

Data 

DataMoreTwoVariables 

D···D I 
'~ 

Data One Dependent 

,~ 

DataOneDependent­
TwoVariables 

~D 
. 

' 

' 

D varables 

I independent 
variable 

0 dependent 
variable 

I weight 

~ 
DataMore TwoDependent 

Figure 3.3: Data class and its subclasses 
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method: print frequency, graphics (histogram, probability-plot), test for nor­

mality, check of data. 

DataMoreTwo Variables( n x p, p 2:: 2): The number of variables of data is more 

than or equal to 2. This class is classified by the number of dependent variables 

(q) and the number of independent variables as follows. 

Remark: The number of independent variables must be one or more , but the 

number of dependent variables is allowed to be zero or more. 

method: graphics (scatter matrix, scatter) 

DataNoDependent (q = 0): The number of dependent variables is 0, hence 

all variables are independent variables. 

method: correlation matrix, factor analysis (FA), principal component 

analysis (PCA), Hayashi's third method of quantification, cluster analysis. 

DataNoDependentMoreTwoVariables (n x 2, q = 0): The nu1nber 

of variables is 2, and both variables are independent. 

method: x2 test of independent. cross table. 

DataOneDependent ( q == 1): The number of dependent variable is 1 and 

other variables are independent variables. 

method: regression analysis, logistic regression analysis, discriminant anal­

ysis, AN OVA, Hayashi's first or second method of quantification. 

DataOneDependentTwoVariable (n x 2, q == 1): The nun1ber of vari-

ables is 2 (one variable is dependent and the other is independent). 

method: t-test, Fisher's exact test. 

DataMoreTwoDependent ( q 2:: 2): The number of dependent variables is 

more than or equal to 2 and there is at least one independent variable as 
mentioned above. 

method: multivariate-regression, MANOVA, Canonical correlation, path 
analysis, structural model. 

Remark: Statistical analysis methods do not always belong to each class, but belong to 

its subclass which is classified by variable type. For example, the method 'Hayashi's third 

method of quantification' is belong to the subclass of DataNoDependent class in which 

all variables are dummy(0/1) variables, and the method 'PCA' is belong to one in which 

all variables are continuous variables. 
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3.5 Other classes 

3.5.1 Result class 

After an analysis we get an instance of this class. Every result of the analysis (for example 

score, loading graphics and so on) belong to this class and all of them are reusable. For 

example, after PCA, we get 'PCAresult' which is an instance of this class. The instance 

contains a principal component score, loading vectors, and so on. So we send 1nessage 

'get' with 'score' to 'PCAresult', we can get the score which is an instance of Data class. 

If we want a scatter of the score, we send message 'scatter' to the score to get graphical 

result which is another instance of Result class. 

3.5.2 Classes for display 

There are two type classes for display. One is dependent on NeXT computer, the other 

is independent. The computer dependent classes are defined as subclass of certain class 

in class library 'Appkit'. TextWindow class is subclass of ScrollView and it is used to 

display some text and ViewWindow class is subclass of View and it is used to display 

some graphics. When we develop a system using our classes in other computers, it is 

necessary to implement TextWindow class and View,Nindow class for other computers. 

The computer independent classes are TextManager class for displaying sotne text 

and ViewManager class for displaying some graphics. ViewManager class has subclass 

for every graphical statistical analysis method. For example, ScatterPlot class is used for 

'scatter plot' and Histogram class is used for 'histogram'. These classes make a instance 

of computer dependent classes and use it. For example, when a instance of Histogram is 

received message to display, make a instance of View Window and send message to draw 

a graphics (lines and letters). Hence computer dependent classes has methods for only 

basically drawing. 

3.6 Examples 

We consider the principal component analysis as an example of data analysis using our 

classes. Since most of the matrix calculation methods are available, 1nost of statistical 

analysis using matrix calculations can be developed easily by using our classes. 

This method belongs to subclass of DataNoDependent class (n x p data, p ~ 2 and 

all variables are independent) in which all variables are continuous variables. 
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(1) Construct a new matrix from the instance of Data class and new vectors from its 

mean and standard deviation (s.d.). 

(2) Standardize the data matrix using a mean vector and a s.d. vector. 

In step (2), use only matrix calculations to standardize data matrix. Most of matrix 

calculations are prepared as methods in Matrix class. 

(3) Calculate eigenvalues and eigenvectors. 

Output of the step (3) is an instance of Data class with EigenVector class. This is 

considered a subclass of Variable Vector class with an eigenvalue. When the message 'print 

basic statistics' is sent to the instance, a table of eigenvalues and eigenvectors is displayed. 

{4) Determine the number of components using the table and delete superfluous compo­

nents. We obtained a factor loading matrix. 

(5) Multiply the standardized data matrix by the factor loading matrix to get scores and 

generate an instance of Result class including both scores and loading. 

In step (5), both scores and factor loadings are instances of Data class included in 

PCAresult. 

(6) Send message 'print' and 'plot' to scores and loadings to print and display the scatter 

plot of scores and loadings. 

Here, we obtain tables and graphics of the corresponding scores and loadings. 

3.7 'Stat' systena 

We develop 'Stat' system using Data classes and Matrix class in NeXT computer with 

Objective-C language, InterfaceBuilder, ProjectBuilder and class library 'Appkit'. 

3.7.1 Executing example 

We treat the Principal Component Analysis for the executing example. The data is the 

amount of consumption of foods for person per one year in 1954 to 1956 (Wakimoto et 

al, 1992) (Table B.1). 
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In the 'File Viewer' of NeXT computer, we select our system 'Stat' and double click 

this icon. Then Stat system is started, the menu appears at the upper left corner, and 

the 'Main Window' appears at the center (Figure 3.4). 

In the first, we must decide the data, so, we click 'de File' and 'open' commands in 

the menu. We select the data file and double click it. 

Our system reads the file, and creates an instance, w·hich belongs to the class of 'DataN­

oDependent'. The instance is registered in the Main Window and applicable methods to 

the instance are displayed in the right side in the window. 

Now, we apply the method 'PCA' to the instance. We apply the PCA to the stan­

dardized data, so we click the 'correlation' button (Figure 3.5). 

The system executes the PCA method, and creates the new instance 'PCA( Cor)', 

which belongs to the class of 'PCA Result'. It consists of nine objects of the third column 

in the window, and we can use two methods('Delete' or 'Display') to the instance. 

We send a message 'Display' to the instance of 'PCA Result', then we get the default 

outputs, which are eigenvalues and their proportional values, scatter plot of the loadings 

and the PCA scores. In this case the first three eigenvalues exceed one, which is an 

average value of the proportion, then only these pairs are displayed (Figure 3.6). 

The PCA score is a member belonging to the 'PCA Result', and it is an instance of 

'DataNoDependent' class. So, we can apply the method 'Display' to this instances, then 

we can see their values. This result contains all components (Figure 3. 7). 

3.7.2 MAT in Stat 

MAT language, in chapter 2, can be used in 'Stat' system. To use MAT language, we 

apply the method 'MAT' to the instance. We click 'rv1AT' in method area (Figure 3.8), 

then a 'MAT' window open (Figure 3.9). 
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Figure 3.4: Main Window of Stat Syste1n 

Figure 3.5: Selecting a PCA method 
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Figure 3.6: Results of PCA 
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Figure 3. 7: Displaying PCA Scores 
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Figure 3.8: Main Window of 'Stat' 
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Figure 3.9: MAT Window of 'Stat' 
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When the MAT window start, following variable is already defined. 

Therefore, we type 

variable name content 
a name of data data matrix 
average 
sd 
cov 
corr 

average vector 
standard deviation vector 
variance-covariance matrix 
correlation matrix 

stddata=('name of data' -av~~rage)/sd 

in the MAT windows to get standardized data stddata. Also it is possible to use new 

analysis method which is not implement in 'Stat' system by using MAT language and 
previous variables. 

After matrix calculations, we will obtain results of the analysis method as some matri­

ces. Thus, the MAT window has new function data to convert from a instance of Matrix 

class to a instance Data classes, because only Data c:lasses have methods for graphical 
expression or statistical analysis. 

Table 3.1: New matrix functions 

Let A is matrices. 

data(A) convert to a instance of Data class 

3.8 Conclusions 

To use our Data classes, statistical analysis methods are li~ited by attributes of variables. 

Hence, if there are sufficient information of statistical data, making 'miss using' can be 

decease. In this sense, when user uses Stat system we developed, he makes little 'miss 
using'. 

Our classes for statistical data are not complete. But, because of encapsulation concept 

of the OOP technique, it it easy to add new methods or new classes to these classes. And 

it is easy to add new statistical analysis methods to these classes to use MAT language. 

vVe interrupt to define classes for statistical data and to extend 'Stat' system for a time. 

In following chapter, we design a knowledge base and a inference engine to develop the 

data analysis system with knowledge. Off course, we use our classes defined in previous 

chapter and this chapter to develop that system. 

-25-



4 Knowledge Base and luLference Engine 

4.1 Introduction 

A knowledge base is a set of knowledge. An inference engine makes decision using knowl­

edge in the knowledge base. In this thesis, knowledge is every thing what we consider 

when we use software for statistical analysis or how to use software. 

Both a knowledge base and an inference engine are necessary to developing expert 

system. A quality of a knowledge base determines a quality of expert system and a power 

of an inference engine determines a power of expert system. 

In this chapter, we discuss both a knowledge base and an inference engine using the 

OOP technique. 

4.2 Inference Engine 

There are three major models for implementation of an inference engine, "frame model", 

"network model" and "blackboard model". 

On a frame model, every data is called frame. It has slots which keep a several 

properties of itself. When an inference engine makes some decision, it access slots of 

object and according to these properties and some knowledge in knowledge base. On 

a network model, every knowledge is called node and linked each other. According to 

links of knowledge, an inference engine makes decision. On a blackboard n1odel, there 

are several inference engines. which have own knowledge base. Every inference engine is 

looking at 'blackboard' and if there is a question in blackboard and the engine has its 

solution, erase the question and write the solution to blackboard according to knowledge 

of it. 

We propose a new model "Object-Oriented" model. A Data is defined as class, then 

it has methods which is statistical analysis method. From polymorphism concept of the 

OOP technique, there are methods which have same name but different result. So, when 

instance of Data class receive a message, it return a certain result according to own method 

without inference engines. In this sense, a method can be role of a knowledge. 

An inference engine makes a decision sending message. The engines sends a message to 

instance of Data to get properties and makes a decision using own knowledge. Therefore, 
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• • • 

Figure 4.1: Concept of working of :Knowledge class 

if a knowledge is defined as class and has a method for inference, a knowledge can be 

used role of an inference engine. A knowledge base is set of knowledge and also it is a 

knowledge. 

Our proposed system using this model. A knowledge has role of inference ngines and 

sending message for inference, it makes a decision of what message send to data. So, we 

defined Knowledge class for knowledge and inference engines. Also, this idea is effective 

following sense. 

• A knowledge base has to be made only once, since instance of class can be archive 

to files. 

• A knowledge is separated from a statistical systetn, so a maintenance of knowledge 

can be held without maintenance of the system. 

• And it is possible that several system use same knowledge. 

4.3 Knowledge class 

When a instance of Knowledge class or its subclass receive a message with data and 

instance to use as history, and the instance do something according to its own knowledge 

and return result and history which is added what to do in it. A knowledge means 

statistical analysis, decision making, transformation, or other. Figure 4.1 show a concept 

of working of Knowledge class. 

Figure 4.2 show knowledge class and its main subclasses. 

4.4 Subclasses of Knowledge ctass 

KnowledgeBase This class has a sequence of instances of Knowledge class or subclass. 
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Knowledge 

KnowledgeBaseNC 

Knowledge Base EveryVariable 

EveryFactorNumber 

MemFunction 

{ 

FussyRule 

Call Knowledge 

RuleBase 

Send Message 

Figure 4.2: 'Knowledge class' and its subclasses 

They receive message sequentially like Figure 4.1. At last, it returns a data which 

last instance returned. 

KnowledgeBaseNC This class is subclass of ':KnowledgeBase class'. Difference 

between two class is a instance of this class returns a data which it received 
first. 

Every Variable This class is also subclass of 'KnowledgeBase class'. A instance of 

this class sending message with a every variable. 

Every Factor Number This class is used for Principal Component Analysis (PCA), 

Factor Analysis (FA) or other using factor numbers. A instance of this class 

sending message with i (i is the number of factor, i == 1, 2, ... , p, p is a 

number of variables). 

MemFunction This class is implementation of membership functions. 

CallKnowledge This class has a set of instances of 'KnowledgeBase class' or subclass. 

They receive message message independently. It returns a set of data which every 

instance returned. 

FussyRule This class is used decision making. Rule is following style : 
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Rule i: IF Xr is Air and x2 is Ai2 and ... and Xni is Ani and then Yi = Ci 

where xr, x2, ... , Xn is some variables, Air, A.i2, ... , Ain is sorne 'fuzzy set', Yi 

is output variable and ci is constant. In our system, Ci is 1 or 0. 

RuleBase This class is used decision making and has a set of instance of 'Fussy Rule 

class'. When output of Rule i (i = 1, 2, ... , L) is Yi, a conclusion value of 

this class y is 

I 
'Ef=lLWiZiYi ( L ) if 'Ei=l Zi > 0 

y = Li=l Zi 

0 (if Lf=l Zi = 0) 

( 4.1) 

where Zi == J1Ai 1 (xr) X J1A, 2 (x2) X ... X J-lA,n (xn), J-lA,i is membership function 

of Aii and wi is weight satisfied Ef=1 Wi = 1. We assume that rules are made 

as existing some i such that Zi > 0 in ( 4.1). 

This class returns one of signal 'GO', 'WAIT', 'STOP' as result. 

SendMessage This class has a message to send to a data object for executing some 

analysis or getting some information of the object. 

Assume that a RuleBase in sequence of a KnowledgeBase and the KnowledgeBase is 

belong to a CallKnowledge. When a RuleBase returns signal 'GO', the KnowledgeBase 

sent message to the following knowledge in its sequence of knowledge. When signal 

'STOP', the KnowledgeBase is canceled and returns a signal 'STOP' as a result. And 

when signal 'WAIT', the KnowledgeBase returns a sig:nal 'WAIT' as a result and waits 

to send message to the following knowledge until all KnowledgeBase in Calll(nowledge 

return a signal 'STOP' or 'WAIT'. This design makes our system to return statistical 

analysis result at least one but not many. 

4.5 Examples 

For a example of expression using these classes of knowledge, we consider Principal Com­

ponent Analysis (PCA) with standardized data. Figure 4.3 is a main KnowledgeBase. In 

this figure, a class name of knowledge is shown in parenthesis. 

Figure 4.4 is detail knowledge with respect to the KnowledgeBase 'det-num-pc' for 

determining the number of factors. This is called its own knowledge with the number of 

factor i (i is the number of factor, i = 1, 2, ... , p, p i[s a number of variables). Figure 

4.5 and 4.6 show membership functions 'mFEigenMorel' and 'mFcumPropMore80' where 
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r-- pea (Knowledge Base) 

- pre-check (Knowledge Base) 

[ missing-check (Knowledge Base) 

other knowledge ... 
I 

[ weight-check (Knowledge Base) 

other knowledge ... 
I 

[ check-normal (KnowledgeBase) 

other knowledge ... 
I 

pca-exe (Send Message) 

.--post-check (Knowledge Base) 

[ det-num-pc (EveryFactorNumber) 

other knowledge ... 
I 

[score-check (KnowledgeBase) 

other knowledge ... 
I 

[ residual-check (KnowledgeBase) 

other knowledge ... 
I 

Figure 4.3: KnowledgeBase 'PCA' 
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det-num-pc (EveryFactorNumber) 

checkPCAF actor( Rule Base) 

eigenMore1 (FuzzyRule) 

[ mFeigenMore1 (MemFunction) 

cumPropMoreBO (FuzzyRule) ·------, 

[ mFcumPropMore80 (MemFunction) 

shapeOflndex (FuzzyRule) 

[ mFshapeOflndex (MemFunction) 

getF actor( Send Message) 

Figure 4.4: KnowledgeBase 'det-num-pc' 
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Figure 4.5: Membership Function 'n1FEigenMore1' 

,\i ( i = 1, 2, ... , p) is eigenvalue of correlation matrix of data satisfied ,\i > Ai+l ( i = 

1, 2, ... , p - 1) and Pi = E~=l Aj / E~=l Aj ( i = 1, 2, ... , p) is cumulative proportion. 

As a membership function 'mFshapeOflndex' is function of three variables, it is difficult 

to express. Then we omit to show third membership function. 

Last, the return of RuleBase 'checkPCAFactor' is 

where 

{ 

GO (if y ~ 0.80) 
WAIT (if 0.50 ~ y < 0.80) 
WAIT (if y < 0.50) 

(if Z1 + Z2 + Z3 > 0) 

(if Z1 + Z2 + Z3 = 0) 

and z1, z2, z3 is return value of membership function 'mFEigenMore1', 'mFcumProp­

More80' and 'mFshapeOflndex', YI = Y2 = Y3 = 1. 

4.6 Conclusions 

In this chapter, we proposed new model of a inference engine and a knowledge base. 

According to this design, we are developing a proto-type system in NeXT computer with 
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Figure 4.6: Membership Function 'mFcumPropMore80' 

InterfaceBuilder, ProjectBuilder, Objective-C language and Appkit. The software consists 

of only principal component analysis, in now. 

This proto-type software is used for specific statistical analysis and examine our sys­

tem. After that, if we feel to need to modify our classes or system, we re-design classes, 

re-build knowledge and the system and examine again and again. At the same time, We 

add knowledge of other statistical analysis to this knowledge base. Because our knowledge 

base independent from system, it is also necessary to develop a software for making or 

maintenance knowledge base. 

Mouse clicking by a user in 'Stat' system correspond to send message by knowledge 

class in new system. As next step, We have a plan to study how to get knowledge 

automatically under a man expert using the 'Stat' system. 
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5 Detecting a Influential ~;ubset Using 
Clustering Method 

5.1 Introduction 

In this chapter, we explain example of knowledge, detecting influential observations using 

clustering method. 

The problem of detecting influential observations has considered by a number of re­

searchers in the field of regression diagnostics. However, most of them are concerned 

with the influence of single observation and related diagnostic measures are numerous. 

Although those single case diagnostic measures can be easily generalized to multiple case 

diagno'3tic measures, the practical application of detecting jointly influential subsets in 

still problematic because of the presence of the so-call "masking and swan1ping effects" 

as well as the prohibitive computation in view of large subsets involved. There have been 

proposed two major type of practical method for this problem. One is the method based 

on the cluster analysis with similarities defined by the modified hat matrix. This type 

was originally proposed by Gray and Ling ( 1984) and was modified by Hadi ( 1985). The 

other is the method based on robust regression such as Rousseeuw(1984, 1990) 's method 

based on his least median of squares regression. Both are useful for detecting influential 

subsets in regression analysis , but the ideas behind them can not be applied directly to 

other multivariate methods. 

In sections 5.2, we propose a method of detecting influential subsets using clustering 

method in multivariate methods where the empirical influence function (EI F) are avail­

able. Regarding this topic Tanaka, Castano-Tostado and Odaka (1990) among other have 

recommended and illustrated to use principal component analysis (PCA) or canonical 

variate analysis (CVA) for detecting individuals with relatively large EI F vectors and 

similar influence patterns, on the basis of the additivity property of EI F. 

In section 5.3, we propose a clustering method using a linked lines rotation graphics 

(LLRG) which is a method of dynamic graphics. This graphics method is proposed by 

Wakimoto(1993) and based on the idea of the constellation plot proposed by Wakimoto 

and Taguri(1978). These graphics consist of the linked lines chart based on the p-variate 

data and the locus which is plotted by rotating the end point of this chart. Observing 

this graphics, we can find some groups of observations which have similarities. 
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5.2 Influential subset 

5.2.1 Influence functions for single-case and multiple-case di­
agnostics 

To evaluate the influence of each individual, we make use of the idea of influence function 

or influence curve (Hample, 1974). Let () = O(F) be a parameter which is expressed as a 

functional of the cumulative distribution function( cdf) .F. Then the theoretical influence 

function T I F(x; 0) at x is defined as 

T IF ( x; ()) = () ( 1) == lim ( B - ()) / c, 
£-+0 

(5.1) 

where B == B(F), F == (1- c)F + cbx is a perturbed cdf of 8x and 8x is the cdf of a unit 

point mass at x. When /theta is expanded in a power series of c as 

(5.2) 

the T IF is obtained as the coefficient ()( 1) of the first order term of c, or equivalently the 

first differential coefficient of () (c) at c == 0. 

The empirical influence function (EI F) is obtained by replacing the empirical cdf F 
for Fin the definition ofT IF (5.1). There we usually focus our interest on the values at 

x = Xi ( i = 1, ... , n) given by 

EIF(xi; 0) = 0}1
> == lim[O((l- c)F + c8x -)- O(F)]/c, 

£~0 I 

where the estimate 0 is defined by 0 == () (F). 
The sample influence function (Sf F) is obtained by taking c 

omitting the limit (5.1). The SIF is then 

where the subscript ('i) denotes the omission of the i-th individual. 

(5.3) 

-1/(n - 1) and 

(5.4) 

When we consider the perturbation on F as explained in the above, the covariance 

matrix corresponding to this perturbation is expressed as 

(5.5) 

where 1-L and ~ are unperturbed mean vector and covariance matrix, and the influence 

function for ~ is given as :E(l). 
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For evaluating the influence of multiple individuals it is convenient to generalize the 

influence function in the following manner (Tanaka, 1992). Let us introduce a perturbation 

on the cdf F as 

F -t F = (1- c)F + cCi, (5.6) 

where G == k- 1 'EiEA Ox,, and A= { i1, , i2 , ... , ik} is an index subset of individuals, and 

define the generalized influence function for A as 

TIF(A;O) = 0~) = lim(O(F)- O(F))/c. 
c:-tO 

(5.7) 

Then it is easy to verify that the following relation holds: 

T I F(A· B) = 0(1
) == ~ "oP) == ~ "\.~ T I F(x·· 0) 

' - A k L...J t k L..J '' · 
iEA iEA 

(5.8) 

Thus, the generalized influence function for a given set A is obtained as the average of 

the ordinary influence function for each member of the set. Similar relation holds also for 

the ElF. 

Let F(A) be the empirical cdf based on sample with a subset A omitted. Then 

~ k ~ k 1 
F(A) == (1 + --)F - -- · -LOx, 

n- k n- k k iEA 
(5.9) 

holds. this implies the perturbation ofF with c = -k/(n- k). Using the approxi1nation 

up to the first order term of c, we have 

(5.10) 

In the above equation the two estimates 0 and B(A) are based on nand (n-k) individuals, 

respectively. The influence of a set of individual belonging to the set. Therefore, from 

the right-hand side of ( 5.10), we should search for the individuals which are relatively 

influential individually and also have similar influence patterns with each other. For this 

purpose we can apply PCA, CVA and cluster analysis to obtain ordinary E IF. 

5.2.2 Influence measures 

Now we consider the influence due to the perturbation scheme (5.6) with parameter 

c. The generalized EI F {;~) can be used for computing the changes of estimate 0 and 

other results. But, since the results and their change are in general vector-valued, they 

should be summarized into scalar measures from some specified aspects of influence for 

-36-



convenience to evaluate the amount of influence. though the basic idea is cornmon for 

any multivariate method where the E IF can be evaluated, we concentrate on the case of 

maximum likelihood factor analysis (MLFA) for illustration assuming an ordinary factor 

analysis model with multivariate normality, and consider three aspects of influence such 

as the influence on the estimate A for the unique variance diagonal matrix, on its estimate 

precision ~ and on the goodness of fit statistics X 2. Note that, in MLFA the influence 

function A and T*(l) are available for the unique variance matrices in the so-called comn1on 

factor decomposition :E == T* +D., T* + LLT (L: factor loading matrix) (see Tanaka and 

Odaka, 1989b; Tanaka, Castaiio-Tostado and Odaka, 19190). 

" "(1) "(1) "(1) 1. Influence on the estimate ~: Using EI F ~i , ~A is obtained as k- 1 LiE A ~i . 

The change of the estimate 6d == c · k- 1 EiEA d~ 1 ), where d == (Al1)1, ... , A~1)p)T, 
is summarized into 

(5.11) 

where ~ is the estimated asymptotic covariance n1atrix for d, which is given by 

(5.12) 

where the column vector of Vi == ( v1, v2 , 0 0., v~,) are the eigenvectors associated 

with the largest q eigenvalues of A- 112(S- A)A- 112 , and Sis the maximum likeli­

hood estimate of :E. 

2. Influence on the precision of A: We consider the influence on the estimated asymp­

totic covariance matrix~ given by (5.12), i.e., ~ -t ~ + 6~. Among quantities in 

the right hand side of the last equation of (5.12), the first order differential coeffi­

cient (or influence function) of A is derived by Tanaka and Odaka (1989b) and that 

of V1 ~T can be obtained by using the perturbation theory of eigenvalue problem 

(Tanaka, 1988). Thus, using those A (1) and (V1 vt) (1)' we have linear approximation 

as 

(5.13) 

Applying this approximation to the least equation rn (5.12) we can evaluate an 

approximate ~e: and define the COVRATIO-like rneasure 

(5.14) 

3. Influence on the goodness of fit: The likelihood ratio test statistic for the goodness 

of fit is given by 

X 2 == n log lA + T*l - n log lSI (5.15) 
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The test statistics X 2 follows asymptotically a chi-square distribution with (1/2)[(p­

q)2- (p + q)] degrees of freedom, where p and q denote the number of variables and 

factors. respectively, under the null hypothesis that given model fits to the data. 

An approximate x; is obtained by substituting linear approximations l,.c;' T€* and 

Be. into their counterparts in (5.15), receptively. 

5.3 The clustering method by tlsing linked line ro­
tation graphics 

This graphics method has flowing feature. 

• A height of each circle show a average of object. 

• According to a shape of path, it is possible to make cluster 

We show a process of construction of LLRG. we denote the p-variate data of size n 

by Xi = (xi!, Xi2 , ... , Xip), i = 1, 2, ... , n. if pis odd, ·we can add a new variable which 

has same values to every individual, we suppose that pis even without loss of generality. 

Also, if there is exist some j such that Xij < 0, we can replace Xij by Xi - mini Xij 

(j = 1, 2, ... , p), we suppose that Xij 2: 0 (i = 1, 2, ... , n, j = 1, 2, ... , p) without 

loss of generality. 

Step 1 Suppose that we have three axes u, v and w intersecting prependicuearly with 

each other at the origin 0 in a three dimensional Euclidean space. Let us ensodu a 

straight line OL which intersects w at 0 with angle f) (0 <f)< Jr/2) and rotate OL 

around axes w, then we have a cone as shown in Figure 5.1. For i-th individual Xi, 

we plot the points qi1 , qi2, ... , qip such that 

Xij = Oqij(j = 1, 2, ... ,p), (5.16) 

where 

OR= max(x11 cos(), ... ' Xlp COS f), X21 COS f), ... , X2p COS f), 

... , Xnl COS{}, . . . Xnp COS()) 

and 

7r 27r p7r 
Lb00b1 == --, LboOb2 = --

2
, ... , LboObE. = -(--), 

p+2 p+ 2 2p+2 
7r 27r p7r 

Lb00bE.+ 1 = --
2 

+ 1r, Lbo0br.+2 = --
2 

+ 1r, ••. , LboObP = ( ) + 1r. 
2 p+ 2 p+ 2p+2 
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w 

Figure 5.1: Construction of the rotation graphics 

w 

Figure 5.2: Linked lines rotation graphics (one individual) 
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Step 2 Let Qi be a weighted gravity of the points qi1, ... , qip· Then we have 

where 

-=-=+ p ---=---+ 
OQi = L Wj Oqii, i = 1, 2, ... , n, 

j=l 

p 

L Wj = 1, Wj ~ 0. 
j=l 

(5.17) 

Step 3 We rotate the point Qi 21r radian about the axis Ow, and we plot a linked chart 

of lines of size p such as w1 Oqi1 , w20qi2 , ... , wPOqip· Then, as in Figure 5.2, a locus 

of the point Qi and the linked lines chart are called "Linked lines rotation graphics 

(LLRG)". 

To observe all individual's LLRG in same graphical display, we can find individuals 

which have similar path during dynamically rotating. 

5.4 Example 

Tanaka and Odaka (1989) and Tanaka et al. (1990) applied MLFA and their sensitivity 

analysis procedure to the open/close book data (Mardia, Kent and Bibby, 1979) (B.2). 

The data consist of n = 88 individuals (student) and p = 5 variables (tests), and a two­

factor model was assumed, because three tests held with close book and two tests held 

with open book. The result of MLFA, which are given in Table 5.1, show that the model 

fits the data very well and two factors obtained can be interpreted as the "open book 

factor" and the "close book factor", respectively. 

Table 5.1: Result of the MLFA(The open/closed book data) 

Variable Factor loadings Unique variance (SE) 
1 0.2700 0.6791 0.465~9 (0.1995) 
2 0.3603 0.6716 0.4190 (0.1624) 
3 0.7429 0.5094 0.1886 (0.0599) 
4 0.7403 0.3166 0.3518 (0.0864) 
5 0.6981 0.2856 0.4310 (0.0902) 

X 2 = o.o791 df = 1 
' 

(SE: standard error, df: degree of freedom) 
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Figure 5.3: Index plots of each influence rr1easures 

To investigate the influence of each individual they calculated the EI F for A and 

T* and summarized them into three measures Di, cf7Ri and X 2 . The three measure 

correspond to defined (5.11), (5.14) and (5.15), as single-case diagnostic measures for 

the i-th individual. The index plot of three measures are given in Figure. 5.3. Also the 

applied PCA to EI F for A. Figure 5.4 shows the scatter diagram of the first two principal 

components, where the two principal components explain about 85.59% of total variance. 

From those result they have suggested that subset {75, 82} and {54, 56} form influential 

sets of individuals and that these two subsets affect the result in quite different manner, 

i.e., the sample without the former subset gives worse results in both of the n1easures for 

the precision and for the goodness of fit, while the sample without the latter subset gives 

better result in the both measure. 

Now let us apply LLRG. Figure 5.5 show the LLRG of all data. There are 88 circles 

and paths in this LLRG. To observe the LLRG of every individual we found two subsets 

from this data. First, individuals 75 and 82 have large circle and their paths run right 

side of all paths (Figure 5.6). Second, individuals 54 and 54 have small and high circle 

and their paths trough is almost straight (Figure 5. 7). Both subsets is found as influential 

sets of individuals from scatter plot of PCA. 
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Figure 5.4: Scatter diagram of the first two PC's (ElF) 

Figure 5.5: LLRG of EI F 
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Figure 5.6: Influential individuals {75, 82} 

Figure 5. 7: Influential individuals {54, 56} 
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5.5 Conclusions 

Several methods to detecting influential subset are proposed. For instance, Fukumori , 

Yanagi and Tanaka (1994) proposed a method using non-linear ~apping . The non-linear 

mapping method's aim is also find a some groups of observations which have similarities. 

In this chapter, We show that LLRG can be used for detecting influential subset 

through the analysis of numerical example of the open/close book data using MLFA. 

But, the LLRG has three problem. First, order of variables: if order change, path and 

circle's size of the LLRG also change, and only height of circle is same because of height 

mean a average of all variables of every individual. Hence, we must make a algorithm 

to find the optimal order. Second, if the data size is large, we can find outlier but it 

is difficult to find all clusters as Figure 5.5. Third, this method depends on subjective 

judgement to make clusters. We want to find solution of these problem. 
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Appendix A Tree Structure of All Classes 

Object• 

ControlledObject - (Figure A.2) 

{

Square Matrix - Symmetric Matrix 

Matrixx 

Vector 

NamedObject { 
NonNegativeFioatValue 

EigenValue 

Value 

tringValue 

Continuous Variable 

Categorica.IVariable 

Variable Vector DummyVa1riable 

WeightVariabl 

EigenVector - Loading Vector 

Text Manager 

ViewWindow 

{

View•• I ScroiiView" - Te:dWindow 

Responder" 1 (other classes) 

(other classes) 

* 
"'* 

Class defined in Objective-C 
Classes defined in A ppki t 

Figure A.l: tree structure of all classes 
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ControlledObject 

DataNoDep1emdent --DataNoDependent-

Data t TwoVariables 

t 
DataMoreTwoVariables DataOneDependent - DataOneDependent-

TwoVariables 

Data One Variable Data More TwoDependent 

Loading KnowledgeBaseNC 

Knowledge 

Result 

Value Table 

KnowledgeBase _[Each Variable 

-I EveryFactorNumber 
MemFunction 

{

FussyRule 

CaiiKnowledge 

Rule Base 

SendMessage 

Histgram 

ViewManager { 

Scatter? lot 

Figure A.2: tree structure of all subclasses of ControlledObject Class 
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Appendix B Data 

Table B.1: The amount of consumption of foods for person per one year (1954- 1956) 
(Wakimoto, Tarumi and Tanaka, 1992) 

corn potato sugar pulse vegetables 
Austria 117.8 95.8 30.9 0.7 63.2 

Belgium/Luxemburg 100.0 148.7 28.5 1.9 65.1 
Denmark 89.6 122.1 48.0 3.6 61.9 

France 111.2 129.5 25.6 3.0 132.3 
West Germany 95.7 156.5 27.5 1.7 45.5 

Italy 146.2 46.7 16.4 5.6 96.0 
Netherlands 89.6 95.0 38.9 2.7 66.2 

Norway 94.9 95 .5 39.1 2.8 31.4 
Sweden 76.2 102.0 42.0 1.5 25.1 

Switzerland 101.1 81.6 38.0 2.2 75.1 
Great Britain 88.3 98.5 46.6 4.2 58.5 

Canada 74.1 68.1 44.1 2.2 71.5 
U.S.A. 69.0 45.6 40.7 4.6 98.0 

Argentine 100.2 64.7 33.2 7.1 48.7 
Brazil 90.6 50.4 33.0 24.6 26.9 
Chili 137.0 72.0 31.:3 7.6 66.8 
India 130.3 3.2 14.'7 22.7 16.3 
Japan 147.5 27.5 12.2 31.9 67.0 
Thrkey 203.4 29.3 9.16 9.7 75.8 

Australia 92.6 45.3 51.8 1.4 61.3 
New Zealand 86.4 47.2 42.~9 1.5 72.8 
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Table B.1: The amount of consumption of foods for person per one year (1954- 1956) 
(Wakimoto, Tarumi and Tanaka, 1992) (Cont.) 

fruits dairy oils and meat egg 
product fats 

Austria 51.3 47.2 8.3 172.8 17.7 
Belgiun1/Luxemburg 57.2 53.0 14.4: 91.1 22.0 

Denmark 46.6 63.2 7.51 162.2 26 .2 
France 30.7 68.7 10.3: 89.1 17.0 

West Germany 53.3 48.1 10.4 124.7 25.2 
Italy 54.6 20.4 7.8 55.4 13.8 

Netherlands 31.9 38.4 8.2 180.6 27.6 
Norway 37.6 36.9 7.7' 190.4 27.3 
Sweden 49.3 51.5 10.3; 204.7 21.1 

Switzerland 74.6 51.4 9.7' 207.4 17.3 
Great Britain 35.1 23.1 12.6; 149.1 22.0 

Canada 30.9 80.6 16.4 203.0 19.6 
U.S.A. 63.3 81.5 21.2 138.0 20.6 

Argentine 41.9 102.9 6.4 99.4 16.0 
Brazil 88.4 29.8 4.6 42.8 6.2 
Chili 29.9 31.3 4.1 77.4 6.9 
India 12.3 1.5 0.2 40.4 3.6 
Japan 15.9 3.2 3.4 12.5 2.6 
Turkey 33.7 13.5 1.7 32.7 7.3 

Australia 34.1 112.1 10.3 132.6 16.1 
New Zealand 47.2 105.3 13.6 215.8 19.4 
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Table B.2: the open/close book data (Mardia, Kent and Bibby, 1979) 

V1 V2 V3 V4 V5 Vl V2 V3 V4 V5 
1 77 82 67 67 81 26 54 53 46 59 44 
2 63 78 80 70 81 27 4Ll 56 55 61 36 
3 75 73 71 66 81 28 18 44 50 57 81 
4 55 72 63 70 68 29 46 52 65 50 35 
5 63 63 65 70 63 30 3') ... 45 49 57 64 
6 53 61 72 64 73 31 30 69 50 52 45 
7 51 67 65 65 68 32 4(3 49 53 59 37 
8 59 70 68 62 56 33 40 27 54 61 61 
9 62 60 58 62 70 34 31 42 48 54 68 
10 64 72 60 62 45 35 3() 59 51 45 51 
11 52 64 60 63 54 36 5() 40 56 54 35 
12 55 67 59 62 44 37 4(3 56 57 49 32 
13 50 50 64 55 63 38 4r~ \) 42 55 56 40 
14 65 63 58 56 37 39 42 60 54 49 33 
15 31 55 60 57 73 40 40 63 53 54 25 
16 60 64 56 54 40 41 2:3 55 59 53 44 
17 44 69 53 53 53 42 48 48 49 51 37 
18 42 69 61 55 45 43 41 63 49 46 34 
19 62 46 61 57 45 44 4!3 52 53 41 40 
20 31 49 62 63 62 45 46 61 46 38 41 
21 44 61 52 62 46 46 40 57 51 52 31 
22 49 41 61 49 64 47 4!~ 49 45 48 39 

. 23 12 58 61 63 67 48 22 58 53 56 41 
24 49 53 49 62 47 49 31. \) 60 47 54 33 
25 54 49 56 47 53 50 48 56 49 42 32 
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Table B.2: the open/close book data (Mardia, Kent and Bibby, 1979) (Cont .) 

Vl V2 V3 V4 V5 Vl V2 V3 V4 V5 
51 31 57 50 54 34 76 4~) 50 38 23 9 
52 17 53 57 43 51 77 18 32 31 45 40 
53 49 57 47 39 26 78 8 42 48 26 40 
54 59 50 47 15 46 79 23 38 36 48 15 
55 37 56 49 28 45 80 30 24 43 33 25 
56 40 43 48 21 61 81 ~~ 9 51 47 40 
57 35 35 41 51 50 82 7 51 43 17 22 
58 38 44 54 47 24 83 p · t..> 40 43 23 18 
59 43 43 38 34 49 84 p· ,_) 38 39 28 17 
60 39 46 46 32 43 85 e· 

t..> 30 44 36 18 
61 62 44 36 22 42 86 1'") 

"" 30 32 35 21 
62 48 38 41 44 33 87 e· 

L) 26 15 20 20 
63 34 42 50 47 29 88 () 40 21 9 14 
64 18 51 40 56 30 
65 35 36 46 48 29 
66 59 53 37 22 19 
67 41 41 43 30 33 
68 31 52 37 27 40 
69 17 51 52 35 31 
70 34 30 50 47 36 
71 46 40 47 29 17 
72 10 46 36 47 39 
73 46 37 45 15 30 
74 30 34 43 46 18 
75 13 51 50 25 31 
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