学位論文内容の要旨

交感神経は骨格筋にも分布し、高血圧・糖代謝などの病態生理と密接に関連するとされているが、今日までその交感神経活動ならびに終末機能を評価する方法は見当たらない。麻酔下ウサギの下肢骨格筋に microdialysis 法を適用し、透析液ノルエピネフリン（NE）動態が骨格筋交感神経活動と終末機能を反映するか検討した。大腿内転筋に長さ 13mm のブローピを植え込み、一方からリンゲル液または神経作動薬を灌流し、他方より透析液を採取し、NE 及びその代謝物（dihydroxyphenylglycol; DHPG）濃度を液体クロマトグラフィーで測定した。透析液 NE 濃度は tetrodotoxin（Na⁺ channel blocker）局所投与により減少し、desipramine（NE uptake blocker）局所投与により増加し、その変動は交感神経終末からの NE 放出、再吸収能を反映していた。tyramine（sympathomimetic amine）、KCl、ouabain（Na⁺-K⁺ ATPase blocker）局所投与により透析液 NE 濃度は著明に増加し、その応答は NE 含量、及び NE 放出能を反映していた。透析液 DHPG 濃度は reserpine（vesicle NE transport blocker）局所投与では増加し、NE 代謝阻害剂 pargyline（monoamine oxidase blocker）で減少した。これらの DHPG 変動は神経終末における細胞内 NE 濃度を反映していた。骨格筋 microdialysis 法による NE ならびに DHPG モニターは、筋交感神経活動と終末機能評価に有用であることが示された。

論文審査結果の要旨

本論文、In vivo monitoring of norepinephrine and its metabolites in skeletal muscle は、従来心筋に対して応用されていた技術を骨格筋に適応させ、microdialysis 法を用いて norepinephrine（NE）、およびその代謝産物である dihydroxyphenylglycol（DHPG）を測定することで、骨格筋における交感神経活動をみたものである。

交換神経終末より NE の放出、その分解、再吸収に影響する物質を同時に灌流することで、その変化を調べ、交感神経終末の NE 産生代謝機能のどこが障害されているかを推察することが可能であることも証明している。さらに、副論文 Acute limb ischemia does not facilitates norepinephrine release from muscle sympathetic nerve endings in anesthetized rabbit では、この技術を実際に応用し、麻酔下ウサギ下肢において、急性虚血によって骨格筋の交感神経活動は亢進しないことを示し、心筋虚血における場合と異なることを証明している。

この論文は下肢虚血性疾患を始め、今後の骨格筋疾患研究の一助となる価値を持っていると考える。よって本研究者は博士（医学）の学位を得る資格があると認める。