緒 言

岡山農場における春作パレイヤショは年次によって収量形質が大きく変動し1,2), 安定的に多収を得る条件の検討が課題となっている。前報3)では品種・施肥量・栽植密度を異にした試験区のデータを用い、低収量年（1984年春作）における収量形質の変異の実態を明らかにした。その結果この年の収量はいずれの試験区でも低く、少肥区で低収化が軽減されていたものの、とくに高収量を維持した試験区はみられなかった。低収の原因としては気象条件など試験要因以外に存在するものと推察され、施肥量を抑えるなどいわば激極的な低収回避が必要であることが示唆された。

収量が比較的高かった1982年産では上イモ平均1個重が110g, 面積当たり上イモ数が40個/m²で、400kg/aの収量を示した試験区もみられた。

1985年春作では気象条件の堆積が順調で多収穫が期待された。本報では収量レベルが比較的高かった1985年の収量形質に検討を加え、増収のための基礎資料を得ようとする。

材料と方法

前報3)と同様に品種4水準、施肥量2水準および栽植密度2水準を組み合わせた試験区、合計16区（第1表）を設けた。

第1表 試験要因

<table>
<thead>
<tr>
<th>要因</th>
<th>水準</th>
</tr>
</thead>
<tbody>
<tr>
<td>品種</td>
<td>男爵イモ</td>
</tr>
<tr>
<td></td>
<td>メークイン</td>
</tr>
<tr>
<td></td>
<td>デジマ</td>
</tr>
<tr>
<td></td>
<td>セトユタカ</td>
</tr>
<tr>
<td>栽植密度</td>
<td>密植（100cm×22cm, 455株/a）</td>
</tr>
<tr>
<td></td>
<td>稀植（100cm×25cm, 400株/a）</td>
</tr>
<tr>
<td>施肥量</td>
<td>多肥 N 2.0 P2O5 14</td>
</tr>
<tr>
<td></td>
<td>K2O 1.9 kg/a</td>
</tr>
<tr>
<td></td>
<td>少肥 各要素とも多肥区の半量</td>
</tr>
</tbody>
</table>

各区は約15m²とし、周辺は慣行栽培のパレイヤショ圃場とした。3月6日岡山農場西側圃場に栽植し、6月17日各区10個体を収穫し、主要収量形質を測定した。

測定結果の分散分析によって試験要因の有意性を検定した。

結果

各区の主要収量形質を第2表に、収量形質の分散分析結果を第3表に、それぞれ示した。

1. 1株イモ数

品種要因に有意性が認められ、メークインが大きい値を示した。施肥要因は有意ではない。
第2表 品種・栽植密度・施肥量を変えた場合の主要収量形質（1985年）

<table>
<thead>
<tr>
<th>品種</th>
<th>酸戸区</th>
<th>密</th>
<th>多</th>
<th>少</th>
<th>密</th>
<th>多</th>
<th>少</th>
<th>密</th>
<th>多</th>
<th>少</th>
<th>密</th>
<th>多</th>
<th>少</th>
</tr>
</thead>
<tbody>
<tr>
<td>イモ</td>
<td>5.5</td>
<td>795</td>
<td>5.1</td>
<td>791</td>
<td>155</td>
<td>360</td>
<td>23.2</td>
<td>93</td>
<td>100</td>
<td>72</td>
<td>94</td>
<td>73</td>
<td>94</td>
</tr>
<tr>
<td>糸</td>
<td>7.2</td>
<td>431</td>
<td>5.0</td>
<td>404</td>
<td>81</td>
<td>184</td>
<td>22.8</td>
<td>69</td>
<td>94</td>
<td>73</td>
<td>94</td>
<td>74</td>
<td>93</td>
</tr>
<tr>
<td>メーク</td>
<td>15.7</td>
<td>1,189</td>
<td>10.7</td>
<td>1,102</td>
<td>103</td>
<td>501</td>
<td>48.7</td>
<td>68</td>
<td>93</td>
<td>65</td>
<td>91</td>
<td>71</td>
<td>96</td>
</tr>
<tr>
<td>イン</td>
<td>16.0</td>
<td>1,068</td>
<td>10.4</td>
<td>974</td>
<td>94</td>
<td>443</td>
<td>47.3</td>
<td>65</td>
<td>91</td>
<td>71</td>
<td>96</td>
<td>70</td>
<td>92</td>
</tr>
<tr>
<td>糸</td>
<td>15.3</td>
<td>1,457</td>
<td>10.8</td>
<td>1,329</td>
<td>129</td>
<td>557</td>
<td>43.2</td>
<td>71</td>
<td>96</td>
<td>81</td>
<td>98</td>
<td>70</td>
<td>92</td>
</tr>
<tr>
<td>デジマ</td>
<td>15.9</td>
<td>1,050</td>
<td>11.1</td>
<td>967</td>
<td>87</td>
<td>387</td>
<td>44.4</td>
<td>70</td>
<td>96</td>
<td>68</td>
<td>96</td>
<td>81</td>
<td>98</td>
</tr>
<tr>
<td>セト</td>
<td>9.2</td>
<td>730</td>
<td>6.5</td>
<td>682</td>
<td>105</td>
<td>310</td>
<td>29.6</td>
<td>71</td>
<td>93</td>
<td>67</td>
<td>92</td>
<td>83</td>
<td>98</td>
</tr>
<tr>
<td>エタカ</td>
<td>11.0</td>
<td>774</td>
<td>7.4</td>
<td>711</td>
<td>96</td>
<td>324</td>
<td>33.7</td>
<td>67</td>
<td>92</td>
<td>83</td>
<td>98</td>
<td>72</td>
<td>96</td>
</tr>
<tr>
<td>糸</td>
<td>7.1</td>
<td>776</td>
<td>5.9</td>
<td>759</td>
<td>129</td>
<td>304</td>
<td>23.6</td>
<td>83</td>
<td>98</td>
<td>72</td>
<td>96</td>
<td>72</td>
<td>96</td>
</tr>
<tr>
<td>全区平均値</td>
<td>9.5</td>
<td>808</td>
<td>6.9</td>
<td>767</td>
<td>115</td>
<td>327</td>
<td>29.4</td>
<td>74</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第3表 収量形質の分散分析結果（1985年）

<table>
<thead>
<tr>
<th>品種</th>
<th>栽植密度</th>
<th>施肥量</th>
<th>品種 - 栽植密度</th>
<th>品種 - 施肥量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1株イモ数</td>
<td>＊＊＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>1株イモ重</td>
<td>＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>1株上イモ数</td>
<td>＊＊＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>1株上イモ重</td>
<td>＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>上イモ平均1個重</td>
<td>＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>収量</td>
<td>＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>面積当たり上イモ数</td>
<td>＊＊＊</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>上イモ歩合（個数）</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
<tr>
<td>上イモ歩合（重量）</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
<td>[※]</td>
</tr>
</tbody>
</table>

[※] P < 0.2 で有意。
＊ P < 0.05 で有意。
＊＊＊ P < 0.01 で有意。
が、少肥区がやや多かった。栽培密度要因には有意性が認められなかった。
2. 1株イモ重
品種要因に有意性が認められ、メールインが大きい値を示した。施肥量要因は有意ではないが、多肥区がやや多かった。栽培密度要因には有意性が認められなかった。
3. 1株上イモ数
品種要因に有意性が認められ、メールインが108個/株でセトユタカの2倍以上の値を示した。施肥量要因と栽培密度要因で有意差が認められなかった。
4. 1株上イモ重
品種要因に有意性が認められ、メールインが大きく男爵イモが小さい値を示した。施肥量要因では有意となり、多肥区が多かった。栽培密度要因には有意性が認められなかった。
5. 上イモ平均1個重
全区の平均値が115gでかなり高い値となった。品種要因に有意性が認められ、デジマとセトユタカが大きい値を示した。施肥量要因は5%水準では有意とならなかったが、平均値では多肥区127g、少肥区102gで多肥区が多かった。栽培密度要因には有意性が認められなかった。
6. 収量
全区の平均値が327kg/㎡で低収年（1984年、221kg/㎡）のほぼ150%に相当する。品種要因に有意性が認められ、メールインが最も大きく、以下セトユタカ、デジマ、男爵イモの順であった。施肥量要因は危険率5%では有意とならなかったが、多肥区平均値369kg/㎡、少肥区平均値285kg/㎡で多肥区が多い傾向が認められ、ときにメールインでは施肥量要因の区間差が大きかった。栽培密度要因は有意性が認められなかったが、いずれの品種、施肥量でも密植区のほうが大きい傾向があった。
7. 面積当たり上イモ数
全区平均値は29.4個/㎡でかなり高い値であった。品種要因に有意性が認められ、メールインが45.9個/㎡で圧倒的に大きい値を示した。
栽培密度要因は有意性が認められなかったが、密植区のほうがやや大きい傾向があった。施肥量要因には有意性が認められなかった。
8. 上イモ步合（個数）
施肥量要因は危険率5%では有意とならなかったが、多肥区がやや高い傾向が認められた。品種要因と栽培密度要因には有意性が認められなかった。
9. 上イモ歩合（重量）
施肥量要因では有意性が認められ、多肥区で高い値が得られた。品種要因と栽培密度要因には有意性が認められなかった。

考察
以上のように1985年春作ベリーショは比較的高い収量を示し、低収年に対し、イモ数で約20%，イモ重で約30%それぞれ増加し、結果的に約50%の収量増加であった。

第1図 上イモ平均1個重と面積当たり上イモ数の関係。
実験要因別の平均値で示し、曲線は等収量曲線。
○；品種 1；男爵イモ 2；メールイン 3；デジマ 4；セトユタカ
△；栽培密度 1；密植 2；疏植 □；施肥量 1；多肥 2；少肥

第1図には収量を2つの収量構成要素、すなわち上イモ平均1個重と面積当たり上イモ数と
に分割し、試験要因ごとにこれらの関係を示した。まず収量が中程度であったセトユタカを基準として品種要因について検討してみる。

メートルインは上イモ数が極端に多く、上イモ平均1個重もある程度確保され平均472kg/haと著しく高収量となった。男爵イモでは逆にイモ数の割に上イモ平均1個重が小さく比較的低収であった。デジマは上イモ平均1個重は大きいもののイモ数が少ない。収量成立の型が品種要因によって大きく異なっていたものと考えられ、メートルインはイモ数依存型、デジマはイモ重依存型、男爵イモはイモ数・イモ重不足型と解釈してもよいであろう。

これらの傾向を前年の低収量年と比較してみると3）。同様にセトユタカを基準に検討するとメートルインとデジマとは相対的関係はほぼ同じであった。男爵イモでは上イモ数、上イモ重とも高収量年と低収量年で大差なく、したがって高収量年には他の品種との相対的関係においては上イモ重が著しく少ないという特徴を示した。栽培年次と品種条件との相互作用が見られて興味深いが、厳密な検討は今後の課題としている。

栽植密度要因では植栽区のもうかやイモ数依存型の傾向を示した。密植条件によっても塊茎の肥大が著しく抑制されず、わずかに低収となったと考えられる。これらの傾向は前年の低収量年においてもみられ、この程度の密植は低収量年、高収量年をとわず収量を高めるように作用すると思われる。

施肥量条件を検討すると、多肥区は上イモ数が少肥区と差異がなく、しかも塊茎肥大が著しく良好で、イモ重依存型の多収を示した。これらの傾向は高収量年では異なった様相を示していた。すなわち、イモ数こそ多肥・少肥区とも同程度であったものの、イモ重は多肥区で著しく減少し、結果的に多肥区で低収量となった。このように施肥条件は低収量年と高収量年とで極めて対照的な影響を及ぼしたといえよう。

次にこの年の気象条件と収量との関係に検討を加えるため、第2図に日平均気温、第3図に降水量、第4図に日照時間の推移（1984年）を示す。細線は平均値、黒、灰色が気象月報から作図。
降雨量、第4図に日照時間の推移をそれぞれ示した。平均気温は栽培時から5月上旬まで常に平年値を大きく下回り、5月中旬以降は20℃前後で推移した。6月上旬以降はさらに平年値と変わらず、西南暖地の春作パレオシの生育に理想的ともいえる気温条件であった。低収量年における気温の推移がこれとは対照的であったことを考えれば、この年の気温条件が収量成立上良好であった、高収量をもたらしたことは容易に推察できる。

降雨量の推移にもほとんど問題がなかった。ただし観察によれば灌水が望ましい時期も短期間からあり、また実際栽培では6月下旬の多雨により収穫作業が遅延し、一部イモが腐敗した。

日照時間も順調で、平年以上の生育を予想させる推移であった。

気象条件の推移はイモ数の確保、塊茎の肥大いずれからみても1985年には著しく有利であり1984年は逆に極めて不利であったといえよう。栽培条件を異にしても高収量年にはいずれの試験区も高い収量を示したわけではないが、このことは気象条件がパレオシの収量成立にとど極めて重大的影響を及ぼすことを示唆している。

収量レベるの違いによって、品種要因及び施肥要因が収量成立に及ぼす影響が異なる可能性が明らかになったが、栽培年次と栽培条件との交互作用の厳密な検討が残された課題であると考えられた。

文 献
1) 黒田俊郎・宗友義美・佐藤和正：岡大農場報告5，28－31（1982）
2) 黒田俊郎・宗友義美・多田正人：岡大農場報告7，31－34（1984）
3) 黒田俊郎・宗友義美・多田正人：岡大農場報告8，24－27（1985）