Studies on the Ecology of Insects Sterilized Artificially (Gamma Radiation)

VII. Influence of Gamma Rays Radiation from 137Cs on the Oriental Fruit Fly in Amami-Oshima Island

Masao Kiyoku and Ritsuko Tsukuda
(Laboratory of Applied Entomology)

Larvae of an oriental fruit fly line introduced from Amami-Oshima island were reared using an artificial medium prepared with the base ingredient as corn-flour. When pupae were irradiated with a dose of 8 KR from the 137Cs as gamma-rays source two days before emerging, both male and female adults emerged showed complete sterility. Percentage in emergence, however, was not significantly reduced. In an experiment that two hundred sterilized plus ten normal males were confined with ten normal females in a mating cage, the sterilized males were fully competitive with normal ones in mating to the normal females. Longevity of the sterilized adult males, however, tended to be slightly shorter than that of the normal ones when compared in the survival curves. When less than one hundred and fifty sterilized males were confined, however, few larvae were able to grow to adults. These progeny adult males and females showed the inherited sterility. When dose was 6 KR there was neither significant difference in the longevity between sterilized and normal adults, nor the complete sterility. Besides, the inherited sterility in offspring was not shown clearly. When more than two hundred sterilized plus ten normal males were combined with ten normal females, however, a considerable sterility was found. Causes of the sterility were investigated by dissection of the testes and spermathecae in females mated with 8 KR-sterilized males.

総 言

a) 昭和47年度文部省科学研究費によた。この一部は昭和48年4月、日本応用動物昆虫学会第17回大会において発表した。

本報文を軸にして、1972年夏実験開始に先立ち、実験材料の配置や、ミカンコミニバエの飼育・生態などに関してアドバイスをいただき、また奄美諸島や沖縄本島への観察旅行に際しての国ご便宜をはかって下さった方々、神戸植物防疫所 小泉健治氏、同 宇野沼 謁氏、門司植物防疫所 埼江平三氏、山崎昭氏、同名瀬出張所 小林宏氏 および所員の方々、鹿児島農試大島支場吉田平氏、新留伊俊氏、那覇植物防疫事務所伊波英治氏、松原芳久氏、沖縄県農試宮武良忠氏、黒川宏氏、放射線による不妊化に関してご意見をいただいた東京都立大学理学部大羽教授、ミカンコミニバエの生態に関するご意見をいただいた東京都小笠原支庁岩橋統氏、飼育に関するご意見をいただいた杉本雅雄氏の方々に深謝の意を表する。なお奄美農業学会においてデータの整理、図表の作成に当たって応急昆虫学研究室技術補佐中谷知子に、また実験材料および飼育器具の調達などで助力された佐藤善子夫人に感謝する。

材 料 および 方 法

奄美大島産ミカンコミニバエの蛹を羽化させ塩化コリオンを含む水とその食物として角砂糖およびフィトトン、イースト・エキストラクトとマッカム混合剤の混合物を与えた。交配して得た幼虫の飼料は Watanabe と Kato（1971）および渡辺（1972）の成長と門司植物防疫所名瀬出張所の成長に参考として作ったトウモロコシ粉を主体とした合成飼料であった。飼育については長崎と佐藤（1970）および杉本（1972）の意見を参考とした。

飼育室は植物防疫法にしたがい特別に作ったもので、その中のヘア飼育室は180×180×180 cm、25℃、65～70% R H、8時間明暗、16時間照明（ただし前後の各２時間は暗光）とした。放射線は 137Cs ガンマー線 4 KR/hr、6 KR および 8 KR である。それぞれの照射時期は羽化予定日の2日前の朝であった。本報文では所定の線量を照射した区より発生した成虫を不妊化雄・雌と呼び、S♀と S♂の記号で、また照射しなかった区のものを正常雄・雌と呼び、N♀と N♂の記号で示した。

不妊化の程度は、10 S♀×10N♀、10N♀×10 S♂の組のそれぞれ繰りかえし3回の孵化率平均値で、成虫の生存状態は各種の組み合わせにおいて毎日（または隔日）調査した生存百分率を縦軸に、交配日の日数を横軸として作図した生存百分率曲線で示した。
日おきに産卵器を入れ 2 日後に取り出し、さらに 2 日後に卵数 150 〜 200 枚を単位として孵化率を調査した（ただし卵数が 100 個にみたない場合はその実数）。これらの組み合わせ実験に用いたハエ飼育箱は、27 × 15 × 20 cm の全面金網張りのものであった。次の何倍かの不妊化雄と正常雌と組み合わせて交尾競争を調べるために用いた箱は 30 × 30 × 30 cm の大きさの木製製ハエ飼育箱であった。なお解剖や不妊化雄と正常雌の組み合わせより発生した次代の雌・雄の不妊性をも調査したがその方法は本文中で述べる。

結果

ガンマー線を絞って照射した場合の羽化状態

羽化 2 日前の蛹に対し 137Cs ガンマー線を照射し羽化率を調べた結果は第 1 表である。

Table 1. Percentages in emergence of the oriental fruit flies treated as pupae with the 137Cs gamma radiation.

<table>
<thead>
<tr>
<th>No. experiment</th>
<th>Dose (KR)</th>
<th>0</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78.4</td>
<td>88.4</td>
<td>88.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>86.9</td>
<td>81.2</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>96.5</td>
<td>98.9</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>93.5</td>
<td>97.8</td>
<td>88.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>88.1</td>
<td>95.7</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>86.5</td>
<td>96.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>88.15 ± 5.59</td>
<td>93.10 ± 6.20</td>
<td>85.16 ± 7.71</td>
<td></td>
</tr>
</tbody>
</table>

a） not significantly different at the 5% level by the t-test.

第 1 表の平均値によると 6 KR 照射区の羽化率は対照区よりやや高く、8 KR 照射区のそれは幾分低いが、統計的検定の結果それぞれの差は有意でなかった。なお羽化した成虫の中には翅の伸ばえない個体がみられたが、これは無照射区からもしばしば出現した。したがって 137Cs ガンマー線の 6 〜 8 KR の線量は頭の死亡や奇型を多くすることは思われない。成虫の生存日数については後で述べる。

ガンマー線による不妊化個体と正常個体の交配実験（ガンマー線による不妊判定）

孵化率：8 KR 照射区よりの 10 S ♀ × 10 N ♂ の組は産卵開始後 5 日目ごとの調査日には毎回産卵をするが、その孵化率はすべて 0，10 S ♀ × 10 S ♂ と 10 N ♀ × 10 S ♂ の産卵はほとんど 0 で、まれにみられた数個の卵はその孵化率が 0 であった。よって 8 KR 照射では完全不妊が期待できる。これに対して 6 および 4 KR 照射では孵化率が 0，まれには産卵数 0 の場合もみられたが、一般に産卵が比較的多く（ただし雌が照射された場合には比較的少ない）、その孵化率が高いことがあった。よって 6 KR 以下の線量では完全不妊が望めない。両線量区よりの 10 S ♀ × 10 N ♂ と 10 N ♀ × 10 S ♂ のそれぞれ繰りかえし 3 回の孵化率平均値を、対照区とした 10 N ♀ × 10 N ♂ と比較するために第 1 図を作成した。

照射して高い不妊を期待するのは無理と思われる。

成虫の生存百分率：ガンマー線 8 KR によって完全不妊が得られても、不妊化成虫の生存日数が短かなくては、不妊処理法における効果が充分ではないであろう。不妊化成虫の生存を調べるため 6 よりも 8 KR 両照射区の不妊化雄・雌の生存百分率曲線と正常雄・雌のそれらを第 2 図において比較してみた。

解剖所見

ガンマー線を照射した雄・雌としなかったものをそれぞれ羽化後 2、4、6、8、10、14 日目にリングデ数中において双眼実体顕微鏡の下で解剖観察をしてつぎの知見を得た。

正常雄の卵巢は羽化後 6 日目頃までさほど発育をせず、なお小さく半透明であるが、全体が丸みがかりの輪郭は明瞭である。400 倍に拡大すると小型の卵巣小管がよく見える。8 日目になると急に発育をし、卵の形成がみられ全体の色が白か水かる。10 日目ではほぼ発育が完成する。羽化 2 日前の雄頭へ 137Cs ガンマー線 8 KR を照射すると、羽化した成虫の卵巣は 10 日目はもちろん 14 日目のものも発育を遂げず完全な卵形成も見られない。14 日目のものの外観は一見正常のものの 5、6 日目のものに相当するように思わせる。ただし受精卵と附属芽は外観的には正常のもののとあまりかわらなかった。本実験において 8 KR 不妊化雄と正常雄の組み合わせにおいて、産卵数が 0 か、まれに僅か産卵され、その孵化率がすべて 0 であったのは、ガンマー線による卵巣の発育不良が主な原因であろう。

雌では、正常雄の羽化後 4 日目の精巣はすでに黄色味があり、その中に未熟な精子包膜が認め
人工不妊昆虫の生態に関する研究 Ⅶ

められる。6日目の精巣はその大きさが正常に近く、色はますます黄色味が増し、その中にのはよく発達した長い型の精子包囲がみられる。8日目において精巣より取り出したフリーソの精子はリングル核内で活動し、外見的に成熟したようにみえた。羽化2日前の雄蛾へ 137Cs ガンマ線 8KR を照射すると羽化成虫の精巣は卵巣のように外見的に明瞭な異常がみられない。羽化後10日目および14日目の精巣より取り出したフリーソの精子はいずれも正常な状態と同様にリングル核中において活動をしている。

照射した雌を正常雄と交配し卵を産出しばしばえた羽化後20日目の正常雌を排卵し、受精囊内を400倍に拡大して観察すると、中に侵入した精子が活動しているのを認めることができた。

本実験において8KR 人工不妊雄を正常雌と交配させたとき卵は産出されるが、全く孵化をみなかったのは、ガンマ線による精巣および精子の卵への汚染、活動力の異常によるのではなく、精子内に誘発された致死変異が主な原因であろうことが予想される。

ガンマ線による人工不妊雄と正常雄を組み合わせた実験（人工不妊雄と正常雄の交尾
競争に関する実験）

孵化率：6KR および8KR のガンマ線を照射した人工不妊雄（S♀）100、150、200個
のそれぞれと正常雄（N♀）10個を正常雌（N♂）10個と組み合わせた場合のそれぞれ
の繰りかえし3回の平均孵化率を第3図に示した。対照区は正常雄100個に対し正常雌10個、および前者の60個に対し後者10個のそれぞれの組み合わせである。

第3図によれば、対照区の60N♀×10
N♂の孵化率が予想外に低いが、100個以上S♀を組み入れたいずれの組み合わせの孵化率もすべてそれよりはるかに高く（8％以下）、とくにS♀200個を組み入れた場合は6KR、8KR両区とも孵化率はほとんど0であった。つぎにS♀とS♀20個も組み入れた場合は、実験の都合で多くの組み合わせができなかったので、N♀と
N♂の10対に対して6KR照射区およびS♀
およびS♀をそれぞれ100個ずつ、8KR照射区より50個ずつを組み合わせた実験結果の
みを第4図に示した。これらの組み合わせから8KR区における孵化率がかなり高いこともあった（約15％）が一般に対照区より比較的低い結果が得られた（8％以下）。

成虫の生存百分率：6KR と8KR 照射区より得たS♀×N♀×N♂のS♀とN♀の生存百分率曲線の比較を第5図に示し

Fig. 3. Competitiveness of multiple sterilized male oriental fruit flies (S♀) caged with equal numbers of normal males (N♀) and females (N♂) (avg. of 3 replicates). Radiation dosages were 6KR (above) and 8KR (below).

Fig. 4. Average percentages in hatching of the eggs laid by multiple sterilized females (S♀) and/or normal ones (N♀) which were exposed to multiple sterilized males (S♂) and/or normal males (N♂) in the mating cage (avg. of 3 replicates).
た。

ガンマ線による不妊化雄100個以上と正常雄10個を正常雌10個と組み合わせた場合それらより発生した次代の成虫の不妊現象

前項で述べた組み合わせより発生した次代（F1世代）の雄・雌成虫をF1♂とF1♀の記号で示す。F1世代における生殖個体の発育状態は第2表に示すとおりあまりよくなかった。

Table 2. Percentages in pupation and emergence of the F1 generation produced by mating in which more than one hundred sterilized (S♂) plus ten normal males (N♂) were combined with ten normal females (N♀).

<table>
<thead>
<tr>
<th>Dose (KR)</th>
<th>Matings</th>
<th>No. eggs</th>
<th>No. pupae</th>
<th>% pupation</th>
<th>% emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>S♂ × N♀ × N♀</td>
<td>150 × 10 × 10</td>
<td>500</td>
<td>38</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 × 10 × 10</td>
<td>500</td>
<td>51</td>
<td>10.2</td>
</tr>
<tr>
<td>8</td>
<td>S♂ × N♀ × N♀</td>
<td>150 × 10 × 10</td>
<td>1000</td>
<td>39</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 × 10 × 10</td>
<td>1000</td>
<td>70</td>
<td>7.0</td>
</tr>
<tr>
<td>0</td>
<td>S♂ × N♀ × N♀</td>
<td>0 × 100 × 100</td>
<td>1000</td>
<td>558</td>
<td>55.8</td>
</tr>
</tbody>
</table>

発育したF1♂とF1♀の成虫を用い27×15×20cmの金属箱の中にF1♂×N♀、N♂×F1♀およびF1♂×F1♀の3種の組み合わせを作った。用いた卵は少なくなかったが、第2表に示すとおり成虫数が少なかったので雄・雌15対で6KRと8KR区から上記3種の組み合わせが1組ずつであるが、それらから得た卵化率を第6図に示す。

第6図によると、6KR照射区より得たF1♂×N♀では卵化率がかなり低い（5%以下）。しかしN♂×F1♀（65%以下）もF1♂×F1♀（58%以下）も低くはなかった。しかし8KR照射区より得た各組はF1♂×N♀が14%以下、N♂×F1♀が6%以下、F1♂×F1♀が25%以下で、対照区と比べてかなり低い。よって8KR照射区より得られた次世代の成虫には一応不妊性を認めることができる。
考察

筆者らの研究によれば、好大島産ミカンコミピエのトウモロコシ粉が主食の半合成飼料による飼育系統では、羽化2日前の蛹へ137Cs ガンマー線の 8 KR を照射すると、それらの羽化率には大きい変化がなく、奇型の出現も少なく、羽化した成虫は完全不妊となった。同数の正常蛹と蛹へその 20 倍の 8 KR 不妊化線を組み合わせると、ほとんど完全な不妊が得られた。不妊化線が 15 倍以下であれば、次代に孵化幼虫が若干みられ、それらのうち若干が発育を完了するが、それらの蛹・雌成虫はときにかなり高い不妊性を示した。しかし 8 KR 不妊化線の生存は正常蛹よりやや短かい傾向があった。

生存が短かい欠点を補うために、照射線量を 6 KR に下げると、6 KR 不妊化線の生存曲線は正常蛹と大差がないが、完全不妊を望むことは無理であった。しかし正常蛹・蛹へ 20 倍以上の 6 KR 不妊化線を組み入れると孵化率は比較的低かったので、初代において完全不妊を望まないならば、6 KR でも不妊処理法に合うのではなかろうか。ただこれらの組み合わせより発生した次代の成虫には不妊性を期待することがあまりできないから、生存がやや短かい欠点があるが、8 KR 不妊化線がむしろ有望であるように思われる。

大羽と北川（1973）の研究によれば、小笠原産ミカンコミピエのトウモロコシ粉を主体とした半合成飼料による飼育系統では、蛹化 7、8 日目の蛹へ X 線を 8 KR と 10 KR 照射して、ともに完全不妊が得られたが、6 KR 照射では不完全であった。この結果は筆者らのと線源が異なるがよく一致する。生存曲線は正常蛹との間に大きい差がなかった。これは筆者らの 8 KR 不妊化線より不妊処理法のためには都合がよいようである。

江口ら（1973）の研究によれば、好大島産ミカンコミピエでは、蛹化後 6 日目の蛹へ60Co を 6、8、10 KR 照射し、その線量でも完全不妊を得ている。60Co 線源と同の研究では筆者らと大羽と北川の研究より低い線量によって完全不妊を得ている。照射の時期がすっきりすることがその原因かも知れない。

厳密には上記 3 種の実験結果を比較論評することはできないかも知れないが、X 線、60Co および137Cs ガンマー線の同じ線量を照射した場合に物理的には差があるとしても生物的にはほぼ大きな差がないことも知られている（Bushland, 1960）ので、実用的にはミカンコミピエのガンマー線による完全不妊は X 線も60Co も137Cs ガンマー線も、ミカンコミピエの変異や照射時の条件の相違は考慮されねばならないが、羽化 2 日前の蛹に大体 8 KR の線量を照射すればよいという一般的な結論が得られる。

8 KR 照射による不妊の原因については、大羽と北川の研究では X 線の場合雄の精巢および精子に明らかな異常がなかったこと、筆者らの研究で137Cs ガンマー線による完全不妊を示した雄の精巢内に精子が正常と同様に活動しているのみならず、不妊化線と交尾した正常蛹の受
摘 要

奄美大島産ミカンコムビエビを岡山で羽化させ、トウモロコシ粉を主体とする半合成飼料を用いて飼育し、羽化2日前の蛹へ 137Cs ガンマー線を4, 6, 8KR 照射して各種の実験を行なった。1) 4, 6, 8KR を照射した蛹は、正常のもと大差なく高い羽化率を示し、奇型の出現も少ない。2) 羽化2日前の蛹へ 8KR を照射すると雌・雄成虫とも完全不妊となる。しかし、それらは正常雌・雄より生存日数がやや短いか傾向を示す。3) 10 個の正常雄に対して正常雄10 個とその20倍の8KR 不妊化雄200個を組み合わせるとほとんど完全な不妊効果が示される。15倍の150個以下では若千の卵化幼虫が発育して次世代の成虫となる。4) 上記雌・雄成虫は正常の雌・雄と組み合わせられたとき、比較的高い不妊を示す。5) 生存日数がやや短いという欠点を補正するために、6KR 不妊化雄をつくると、もちろん完全不妊ではない。また次代に発育ができた成虫も不妊性があり期待できない。しかし6KR 不妊化雄を正常雄の20倍、すなわち200個以上組み入れると比較的高い不妊が得られる。6) 我が国における他の研究と比較して、X線、60Co および 137Cs ガンマー線は実用的には大体おなじ線量8KR でミカンコムビエビを完全不妊できることがわかった。7) なお解剖観察によって8KR 不妊化雄の不妊原因は短果そのものの、精子の雄への移動、精子の活動力などの異常によるよりも不妊化雄の不妊原因に起因することを推察された。

引 用 文 献

2) 江口寛明・高木茂・山崎昭: 60Co 照射によるミカンコムビエビの不妊化実験、照射虫の交尾能力について、1-7 門司植物防疫所 (1973).
3) 小泉憲治: 奄美大島の特殊害虫に関する私信 (1967).
12）栄 政文：奄美群島に発生する特殊病害虫。7—17 鹿児島県農試大島支場（1968）。
16）杉本民雄：ミベエ飼育に関する意見についての私信（1972）。
18）渡辺 直：ミカンコミベエ大量飼育に関する私信（1972）。