糖尿病マウスにおける *Escherichia coli* 実験尿路感染症
一尿路定着性と白血球機能について—

岡山大学医学部泌尿器科学教室（主任：大森弘之教授）

岸 幹 雄

EXPERIMENTAL URINARY TRACT INFECTION CAUSED BY *ESCHERICHIA COLI* IN DIABETIC MOUSE.
糖尿病マウスにおけるEscherichia coli実験尿路感染症
尿路定着性と白血球機能について

川崎大医学部泌尿器科学教室（主任：大西弘之教授）
岸 幹 雄

Experimental Urinary Tract Infection Caused by
Escherichia coli in Diabetic Mouse:
—Uroepithelial Colonization and Polymorphonuclear
Leukocyte Function—

Mikio Kishi
From the Department of Urology, Okayama University Medical School

Relationship between polymorphonuclear leukocyte (PMN) function and susceptibility to infections in diabetic mice was studied. In the experimental urinary tract infections, 6 strains of Escherichia coli with different fimbral expression and hemolysin production were used.

In contrast with non-fimbriated strains, fimbriated strains were more susceptible to phagocytosis by PMN. MS⁺ MR⁺ strains, however, showed resistance to intracellular killing by PMN.

OEC-709, OEC-716 (MS⁺ MR⁺ strains), and OEC-734 (MS⁺ MR⁻ strains), also showed resistance to the bactericidal activity of the serum. The killing activities of PMN derived from diabetic mice against these 3 strains were significantly lower than those of PMN from normal mice.

In normal mice, MS⁺ MR⁺ strains showed the strongest colonization ability to the bladder and kidney, whereas MS⁺ MR⁻ strains showed the weakest ability among the strains.

In diabetic mice, the number of bacteria colonizing to the bladder and kidney was higher than that in normal mice, except for one MS⁺ MR⁻ strain. Significant differences were observed in the strains (OEC-709, 716, 734), in which PMN was concerned strongly in the bacterial killing.

Finally, these findings suggest that determination of the bactericidal activity of PMN in a diabetic state is involved in increased susceptibility of diabetic mice.


Key words: Experimental urinary tract infection, E. coli, Diabetic mouse, Polymorphonuclear leukocyte function

続 言

糖尿病における易感染性は臨床の重要な問題の1つである。この易感染性の主な病因子として、高血糖状態とし

ともう1つは白血球機能の低下が指摘されている。この

ものの原因となる因子は単一ではなく不明の部分が多く、また、この因子を解析するため、実験的によく実験感染症における易感染性の程度や感染経路や感染の道を明確に定めることは

ない。著者らは以前報告した成績において、糖尿病マウスでは言うまでもなく感染症の子血において実験

尿路感染症患者において糖尿病マウスの易感染性は認められ

なかった。

感染症は宿主因子と細菌の病原性因子との相互関係

において成立するものであることから、単に高血糖レベルだけではなく、他の病原性因子レベルでの差を解析す

べきであると思われる。Escherichia coli尿路感染症に

における病原性因子として、hemolysin産生能のほかに、細胞の役割が注目され、尿路への定着性、スーパーオキシドラクソアルカリ産生、自発性機能との関連性な

などが検討されている。そこで、今回、糖尿病における

易感染性と白血球機能の関係を明らかにするため、E

coli実験尿路感染症における病原性因子としての病原

と尿路感染との関係を、正常なびに糖尿病マウス
で検討した。

対象と方法

1. 使用実験

(1) 喜平背脊椎筋炎を示す E. coli のうち、血液塩基性および hemolysin 産生能の異なる OEC-709、716、734、738、757、875 の計 6 種を使用した。hemolysin 産生能の判定は 5% ソラジン溶血平板法を用いて判定し、血液塩基性は rockoon tile test にてマラウイ感性集団 (Mannose-sensitive haemagglutination: MSHA) またはマラウイ感性集団 (Mannose-resistant haemagglutination: MRHA) にて判定した。MSHA では 5% ドリュット赤血球を用い、MRHA では 3% ハミル赤血球を用い、E. coli は 3% ハミル赤血球を用い、さらに、MRHA 陽性集団については、ゴム塩基含有リポソームの感性より、P 細胞の検出も行ったが、また、実験動物としてラットを使用することで、マラウイ血液塩基性集団も合わせて検討した。

2. 使用動物と実験的脳脊髄の作成

ICR 系鼠、雄および母鼠（静岡県立熱帯感染動物実験共同使用）を用いた。実験的脳脊髄の作成に関しては、すでに報告したように、150 倍稀釈法を用い、ラット脳脊髄を 1/15 M phosphate buffered saline に懸濁した。E. coli の Wash-blot および 2 時間摂取した内容を用いて、マラウイ脳脊髄を用いて実験を試みた。この条件で、ラットは著しい高血糖状態（約 400 mg/dl）を示した。Fig. 1 に示す。

3. 血液の採取

ラットの腹腔内を 1% glycerol で洗浄し、血液塩基性 2 ml を採取し、3 時間後、ラットライにて注入させた。5 units/ml heparin を添加した 25 mM HEPES に含有 Hank's balanced salt solution (HBSS) 3-4 ml を注入し、等量の血液を採取した。3-4 ml HEPES に含有 Hank's で 2 回洗浄後、実験に供した。なお、採取した細胞の 80% 以上は好中球（PMN）であることを Giemsa 染色にて確認した。

4. ガラス製品

(1) ガラス製品：PMN（3 x 10^6/ml）0.05 ml、コルラップ製品（3 x 10^6/ml）0.01 ml、マラウイ製品（3 x 10^6/ml）0.005 ml の混合液を 23°C、30 min で振動 incubation し、生理食塩水で 3 倍に希釈後、混を 1% bovine serum albumin 生理食塩水に浮遊させ、スライドグラス標本を作製し、Giemsa 染色にて 1000 倍の PMN を計数し、PMN 1 個あたりの数値を計算した。

(2) ガラス製品：PMN（3 x 10^6/ml）0.05 ml、生理食塩水（1 x 10^6/ml）0.01 ml、マラウイ製品（3 x 10^6/ml）0.005 ml の混合液を 37°C、2 hr で振動 incubation 後、滅菌水にて PMN を破壊したのち、tryptase および 塩酸を加えて懸濁し、生検数を数えた。滅菌率は、control (PMN 3% 植入時の数値) と、-native controls の数値に対する百分率で表示した。

5. 脳脊髄の実験

マラウイ脳脊髄を 1% glycerol で洗浄し、ラットライにて注入させた。5 units/ml heparin を添加した 25 mM HEPES に含有 Hank's balanced salt solution (HBSS) 3-4 ml を注入し、等量の血液を採取した。3-4 ml HEPES に含有 Hank's で 2 回洗浄後、実験後に注した。なお、採取した細胞の 80% 以上は好中球（PMN）であることを Giemsa 染色にて確認した。

6. 血液に対する殺菌特性

血液 0.2 ml を tid ビオラット赤血球 0.8 ml の混合液を 37°C、3 時間 incubation 後、振動 incubation 後、生検数を数えた。滅菌効果は control に対する生検数の比で示した。

7. 腦脊髄の実験

Table 1 に示した。OEC-709、716、734、738、757、875 の 6 種を用い、各菌を含有したまき出し液を実験に用いた。なお、実験動物としてマウスを用いた。マラウイ脳脊髄を 1% glycerol で洗浄し、ラットライにて注入させた。5 units/ml heparin を添加した 25 mM HEPES に含有 Hank's balanced salt solution (HBSS) 3-4 ml を注入し、等量の血液を採取した。3-4 ml HEPES に含有 Hank's で 2 回洗浄後、実験後に注した。なお、採取した細胞の 80% 以上は好中球（PMN）であることを Giemsa 染色にて確認した。

Table 1. Properties of 6 strains used in the following experiments.

<table>
<thead>
<tr>
<th>Strain</th>
<th>OEC-709</th>
<th>716</th>
<th>734</th>
<th>738</th>
<th>757</th>
<th>875</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse-HA</td>
<td>2 +</td>
<td>2 +</td>
<td>2 +</td>
<td>2 +</td>
<td>2 +</td>
<td>2 +</td>
</tr>
<tr>
<td>Hemolysin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 1. Plasma glucose levels after intravenous injection of STZ in mice. Mice: ICR, female, 4 weeks old.

Fig. 2. Phagocytosis of each E. coli in normal and STZ-treated mice.
1. SOD, catalase 活性ならびに血清中の抗酸化活性

Table 2 にこれらの成績を示す。SOD 活性には病
微間で差はなく、catalase 活性は OEC-716, 738 でやや低く、OEC-757 ならびに OEC-875 は他
の菌株よりは高いが、全体的には SOD 活性と
同様に病微間での差は認めなかった。一方、血清
に対する酸化抵抗性は OEC-709, 716, 738 の 3 株は
他の 5 株に比べて明らかに高い抵抗性を示し、こ
れらの菌株には PMN の影響が大きいものと示唆
していた。

2. 正常ならびに膀胱炎マウスにおける感染実験

1）正常マウスにおける尿道内感染

Table 3 に示すように、膀胱内菌数は、10^6 程度
時において M5-MR が OEC-709, 716 の菌数
が最も多く、それらが 10^6.21, 10^6.27 (log cfu)
を示した。一方 M5-MR が OEC-709, 716
が 3.74, 3.96 である重要な因子がある。M5-MR
が OEC-709, 716 の再発が増加する。一方、血
微における OEC-757 を含む。いずれの菌株
においても菌数は正常鼠に比して増加していた。特
に、OEC-709, 716, 738, 757 の 3 株で、正常鼠
と比較して有意に低菌数を示した（Fig. 4）。

正常マウスにおける 10^6 種の菌株の膀胱内菌数は、M5-MR
が OEC-709, 716 の菌数が最も多く、その原因は、hemolysin 産生量
の有無と尿道内菌数との関係が示唆された。

2）正常マウスと STZ 造微マウスとの比較

正常マウスにおける尿道内感染における菌数は、M5-MR
と M5-MR の間に 10^6 種の差異がみられず、同様に
M5-MR の菌数も減少した。一方、血
微における OEC-757 を除き、いずれの菌株
においても菌数は正常鼠に比して増加していた。特
に、OEC-709, 716, 738, 757 の 3 株では、正常鼠と比較し
て有意に低菌数を示した（Fig. 4）。

正常マウスにおける 10^6 種の菌株の膀胱内菌数は、M5-MR
が OEC-709, 716 の菌数が最も多く、その原因は、hemolysin 産生量
の有無と尿道内菌数との関係が示唆された。

Table 5に示すように、膀胱内菌数は、10^6 種の
時において M5-MR が OEC-709, 716 の菌数
が最も多く、それらが 10^6.21, 10^6.27 (log cfu)
を示した。一方 M5-MR が OEC-709, 716
が 3.74, 3.96 である重要な因子がある。M5-MR
が OEC-709, 716 の再発が増加する。一方、血
微における OEC-757 を含む。いずれの菌株
においても菌数は正常鼠に比して増加していた。特
に、OEC-709, 716, 738, 757 の 3 株で、正常鼠
と比較して有意に低菌数を示した（Fig. 4）。

考察

1）実験条件の設定について

尿細管感染症における膀胱炎模の発症図の大きな要因は、臨床的には、膀胱粘膜内部・粘膜細胞の神経
性感染の合併である。これは、感染期間が長く、運
動神経異常感染の速い例に、10^6 cfu/ml 以上の
細菌の出現速度が高く報告されていること
からも明らかであり、膀胱粘膜の作成には時間的
要素を含めた実験条件を考慮しなければ、膀胱炎にお
ける感染症を適切に解析しきれないものと思われる。

しかし、実験感染症において、多変数を含むという
観点においてはそのあらゆる要素が、尿細管感染症
における感染症の発症に不可欠であり、尿細管例
における感染症の発症においては、尿細管の試験
の要素を含むべきである。そこで、今回の実験にお
いては、膀胱感染モデルとして感染期間が長くかつ安定
した感染状態が得られた STZ 造微マウスの使用を
用いた。一方、尿細管としては造微感染と同様に、尿細
管感染症の発症要因である、いわゆる造微菌
として様々な症例を含む E. coli を選択した。
明らかにできない理由のひとつとして、使用した菌株が抗酸性に耐性であった可能性が考えられる。

菌株B. cereusにおけるE. coliの生存能力に関する検討では、1981年に報告されているが、発芽後は、菌株の生存力に関しては報告されていない。たとえば、

1. B. cereusの菌株は、E. coliの生存力についての検討は、発芽後は、菌株の生存力に関しては報告されていない。たとえば、

2. 病原菌の性質と医薬ならびに感染症マックスの自発発酵系の関係

菌株B. cereusと自発発酵系マックスの関係について、免疫応答における免疫系の活性化に関して、菌株B. cereusと自発発酵系マックスの関係について、免疫応答における免疫系の活性化に関する、菌株B. cereusと自発発酵系マックスの関係について、免疫応答における免疫系の活性化に関して、菌株B. cereusと自発発酵系マックスの関係について、免疫応答における免疫系の活性化に関
文献

1) 杉山義明, 白鳥病におけるL-精氨酸補給効果に関する研究. 医学科学 35: 121-143, 1981
2) 田中芳之, 野村直志, 他: 抗体免疫細胞の増殖に対する精氨酸アシダーゼの活性に抑制される. 日誌誌 42: 853-856, 1987
3) 木村隆, 小林健一, 他: 免疫抑制作用に対する精氨酸アシダーゼの影響について. 医学科学 37: 150-162, 1989
6) 市川秀明: 尿路感染症におけるE. coliの病原性因子についての研究. 日医誌 79: 1169-1176, 1988
9) 梅田信之, 坂本正志, 他: 腸炎患者の細菌学. 医学科学 28: 229-243, 1979

(Received on February 10, 1992)
(Accepted on April 10, 1992)