Studies on the Effects of Calcium upon Chestnuts II.

(3) On the Effect of Phosphorus Fertilizer in the Case of Overlining the Soil.

Noboru HONDA and Mitsuyoshi OKAZAKI

Summary

(1) An experiment was carried on to know whether or not the decreased growth of chestnut seedlings were attributed to the limited absorption of phosphorus owing to overlining. In this experiment Wagner pots were filled with 18 Kg of soil originated from granite. Six plots were prepared as follows. The pots of Plot St, served as a control, were filled with the soil added with each one g of nitrogen, phosphorus and potassium, and those of Plot St-P were lacked phosphorus fertilizer. In Plot Ca 18.9 g of Ca (OH)$_2$ per pot were added, and in plot Ca-P the phosphorus fertilizer was lacking from the soil, on the other hand, in Plot Ca+2P and Ca+3 P, double or triple dosage of phosphorus fertilizer were added, respectively.

(2) It may be concluded that chestnut seedlings do not suffer from limited absorption of phosphorus caused by overlining (phosphorus content in the air-dried leaves of the Plot Ca was 0.078 %) or non-application of phosphorus. The phosphorus requirement of the chestnut is not so great (the phosphorus content of the air-dried leaves of Plot St being 0.106 %) and no symptom of phosphorus deficiency in leaves was observed even when the phosphorus content in leaves was lowered to 0.06 %, as observed in Plots St-P and Plot Ca.

総 言

筆者等は石灰嫌性植物といわれる日本栗（Castanea crenata Sieb. et Zucc.）の栄養生理上の特性に就いて研究を行っている。前報7において土壌に消石灰を過剰に施与した場合、栄養の吸収が著しく減退することが確認された。故に本報では前報程のoverlimingによるクリの生育抑制が磷酸の吸収減退に由来するか否かについて実験するとともに、クリの磷酸要求度について考察した。

I. 実験材料及び実験方法

本実験に用いた土壌は、前報7と同じ花崗岩風化土壌である。1952年4月21日に2万分の1ウグネルポットに18 Kgの風乾土を入れる際St区（標準区）と前報に相当するCa区（消石灰18.9 gを混入）と、この両区に磷酸を施与せぬSt-P区及びCa-P区と、Ca区に対して2
倍量又は3倍量の硫酸ソーダを施与したCa + 2P区とCa + 3Pの6区を設けた。肥料は標準区その他について3リン石として硫安、酸性堆肥加黒及び硫黴堆肥を用いて三要素各々1g宛施用するのを原則とした。5月14日に基盤として全長約15cmととなった樹木苗の実生を1区3鉢仮にて、各々1pot当り2本宛定植して戸外におき栽培を行い、10月17日に掘り上けて風乾後、生育量を測定し、葉は分析に供した。

葉分析についてCaはKmno₄による容量法、Kは亜硝酸ベリルト・ソーダによる重量法、Mgはオキシリンによる重量法、Pはリプロデンリの比色法、FeはKCNSによる比色法、Mnは過塩酸アンモンによる比色法を用いて定量を行った。

II. 実験成績

本実験各区の土壌pH及び生育量を第1表及び第1図に示す。すなわちSt（標準）区とSt-P（無堆肥）区にて地上部、地下部をつれて全生育量が殆ど同一である。次に第2表を参らべる様にSt区のP含量0.106％及びSt-P区のそれは0.062％で両者は差がある。しかしながらSt-P区がK、Ca、Mg及びFe含量に則してSt区と殆ど差なく、かえってMn含量0.447％でSt区を上をはる。又St-P区とCa-P区とはP含量同一であり、K、Mg、Fe等の含量が後者にて少ないが、それよりもむしろ前報の諸実験にて判然した様にMn含量がCa-P区にて僅かに0.069％であることが両区の生育量にHighly significantな差を生ぜしめた原因である。この両区でさえも葉に後に述べる様な特徴あるP欠乏症状も現われず、又St区とSt-P区及びCa区とCa-P区を比較するに根の発育乃至生育量がこのために遅れたとは考えられず、又Ca区とCa + 2P区とを比

Fig. 1. Amount of Seedling Growth in each Plot.

<table>
<thead>
<tr>
<th>Plot</th>
<th>pH of Soil (Oct.17)</th>
<th>No. of Seeding</th>
<th>Top</th>
<th>Relative Value</th>
<th>Root</th>
<th>Relative Value</th>
<th>Total Growth</th>
<th>T/R</th>
<th>Relative Value of T/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>5.38</td>
<td>6</td>
<td>21.06</td>
<td>100</td>
<td>44.26</td>
<td>100</td>
<td>65.33</td>
<td>100</td>
<td>0.48</td>
</tr>
<tr>
<td>St-P</td>
<td>5.39</td>
<td>6</td>
<td>20.98</td>
<td>97</td>
<td>44.68</td>
<td>100</td>
<td>65.06</td>
<td>100</td>
<td>0.48</td>
</tr>
<tr>
<td>Ca</td>
<td>6.48</td>
<td>6</td>
<td>9.83**</td>
<td>47</td>
<td>23.13**</td>
<td>52</td>
<td>32.96**</td>
<td>50</td>
<td>0.42</td>
</tr>
<tr>
<td>Ca-P</td>
<td>6.47</td>
<td>6</td>
<td>9.89**</td>
<td>47</td>
<td>22.94**</td>
<td>52</td>
<td>32.83**</td>
<td>50</td>
<td>0.43</td>
</tr>
<tr>
<td>Ca+2P</td>
<td>6.47</td>
<td>6</td>
<td>7.81**</td>
<td>37</td>
<td>18.72**</td>
<td>42</td>
<td>26.53**</td>
<td>41</td>
<td>0.42</td>
</tr>
<tr>
<td>Ca+3P</td>
<td>6.46</td>
<td>6</td>
<td>8.85**</td>
<td>42</td>
<td>20.91**</td>
<td>47</td>
<td>29.79**</td>
<td>46</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Range of Confidence (0.05) 4.29 6.93 11.34

Note: **The difference between Plot St is highly significant.
Table 2. Nutritional Status of the Air-dried Leaves as Revealed by Leaf Analysis.

<table>
<thead>
<tr>
<th>Plot</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Mn (%)</th>
<th>Fe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>0.106</td>
<td>0.31</td>
<td>1.20</td>
<td>0.51</td>
<td>0.382</td>
<td>0.015</td>
</tr>
<tr>
<td>St-P</td>
<td>0.062</td>
<td>0.34</td>
<td>1.08</td>
<td>0.50</td>
<td>0.447</td>
<td>0.015</td>
</tr>
<tr>
<td>Ca</td>
<td>0.078</td>
<td>0.35</td>
<td>1.52</td>
<td>0.37</td>
<td>0.090</td>
<td>0.010</td>
</tr>
<tr>
<td>Ca-P</td>
<td>0.062</td>
<td>0.25</td>
<td>1.69</td>
<td>0.39</td>
<td>0.069</td>
<td>0.010</td>
</tr>
<tr>
<td>Ca+2P</td>
<td>0.085</td>
<td>0.40</td>
<td>1.47</td>
<td>0.44</td>
<td>0.090</td>
<td>0.012</td>
</tr>
<tr>
<td>Ca+3P</td>
<td>0.094</td>
<td>0.34</td>
<td>1.37</td>
<td>0.39</td>
<td>0.043</td>
<td>0.006</td>
</tr>
</tbody>
</table>

教材に後述がPの含量がより大きくあっても生育の上に何等の反応を生じないことを見ても、クリはP欠乏に耐えるか又はPの要求度が比較的低いものと推定出来る。

III. 論

WALLACE 10) によれば、果てでP欠乏の場合には葉がしばしば黄褐色で初きさが鈍銅色を呈し、且つ葉面一面向れる様点を伴う。又 CULLINAN 等11) によれば桃でP欠乏の場合には葉が異常に細長く、且つ著しい暗紫色となるというが、本実験のクリには少しも之に類した徵候と認められなかった。次に CULLINAN 等3) 及び VERRHOF 14) によれば桃にて葉中P含量が0.09％にてP欠乏症状を呈し、又 BATJER 等15) によっても果てについてかいる事が推定出来るので、Ca+3P 区には相当海岸の礎酸を施与したのであるが、多量の消石灰を施与した場合にはその有効度が低くなるためにその吸収量がSt区に及ばず、結局消石灰施与の悪影響を脱し得ない様でありMn及Feの吸収量がCa区よりもかえって減少していることを認めめるのである。本実験にては前報7)の場合と異なりSt区及びCa区にて木の発育にも Highly significantな差を生じたが、これは本実験では2万分の1ウグネルボットを用いたので土量が多いから特にSt区の根部の発育が著しく増大したためであることを前報7)の第1表中のSt区の生育量（地上部風乾重12.27g地下部風乾重21.22g）につき比較し、又両実験のSt区のT/R比を検討することによって了解し得る。然しなおも各区間の生育量の差が地上部よりも地上部に顕著なことは各区のT/R比にてもよく表している。

KENTWORTHY 16) によれば、風乾家中のPの含量は洋梨Bartlettの0.135％を除き、緑果（2品種）、桜果（1品種）最もP含量の少ないものは緑玉の0.223％であった。故に本実験のクリのP含量の0.17％は含量の少ないことを示していると思われる。MILLER17)はSOMMER18)が小単位にてPの濃度を高めてもトマト、小麦、棉、ヨーク等の果の発育を促進したかかえとことを挙げた後、P施用により地上部に比し根部の発育がより促進されるとの実験は殆んどないと述べている。本実験にてPは果てよりも根にやや多く含まれていることが明示したがSt-P区及びCa-P区において各々果の発育を施すためわん全生育量の進捗も、亦特に根部の発育が阻害されることを認められたが、この故にクリはPの要求度の低いこと及びそのためかP含量0.05％にてP欠乏症状の現われぬことを確認した。佐藤13)の実験成績によっててもクリのP要求度は低い。

Hsiou-yu Hou等19)によれば、砕石灰植生は酸性地を好みPの含量少なくMn含量の多いことが特徴と云われる。クリに相当酸性を好むこと、又P欠乏に耐える力が相当大であることが判明したが、これは廃棄3)の酸性地の植物の、又は品種の酸性欠乏に耐える力と土壌酸度及び活性
アルミ＝ウムに対する抵抗性に深い関係があると推定した事と併せて考えると興味がある。

Piccioli 1) によれば、アルプス地方においても、クリに最も適する土壌はクロポトクであると
云うが、筆者等の生態調査 2) 及び一般の通念としても、花が期においてもクロポトク地帯に一般
によく生育するものである。然し細田 3) の説く様に可給態濃度の少ないクロポトク地帯にクリがよ
く適応出来るのは、その P 欠乏に耐える力の大であることが大きな原因かと思われる。

IV. 摘 要

(1) 本実験では overliming によるクリの生育制限が磷酸吸収の減少に由来するか否かについて
実験した。花壇岩風化土壌 18 Kg と N.P.K おのおの 1 g を入れたミュウゲネルポットを用い、St
区（標準区）と Ca 区（過剰灰 18.9 g を混入）の外に、St-P 区、Ca-P 区などの無磷酸素区、
Ca 区に対し 2 倍量又は 3 倍量の磷酸を施与した Ca+2P 区、Ca+3P 区などの 6 区を設けた。1
ポット当たり 2 本苗のクリの実生を 5 月 14 日から 10 月 17 日の間栽培した後掘上げて調査した。
(2) クリは overliming 又は無磷酸施与による磷酸吸収の減少によって生育を制限されない。クリ
の耕作要求度は小であり（標準区の風乾重中 P 含量は 0.106 %）、葉中の P 含量が 0.062 %となっ
ても (St-P 区及び Ca-P 区) 植え乏症症状は見られない。

引 用 文 献

3) 建原洞察 (1948) : 農及園, 23 (6), 331～333.
5) 本多昇, 深井篤弘 (1952) : 資源総, 20 (3・4), 166～174.
6) 本多昇, 岡崎光良 (1953) : 岡大農学報, 3, 8～23.
7) 本多昇, 岡崎光良 (1955) : 京大園芸報, 7, 5～9.
8) 本多昇, 岡崎光良 (1959) : 岡大農学報, 14, 61～69.
9) 細田克己 (1938) : 岡大農学報, 6, 1, 1～23.
Jut's Bot. Jahresb. 29 (II), 142～143, 1903)
13) 佐藤久一 (1955) : 農試研報 (農芸) 4 ; 145～216.