このエントリーをはてなブックマークに追加
ID 60717
Author
Tokura, Yuichiro Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Miyagawa, Keita Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Uddin, Md. Azhar Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Kato, Yoshiei Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University ORCID
Abstract
In this study, the effects of impeller rotation speed, off‐bottom clearance, blade angle, types of solid and liquid, etc., on the suspension pattern of sedimentary particles and particle rise height in liquid were investigated with a hemispherical vessel without baffles under low particle concentration. The transition conditions of suspension pattern between regimes I and II, and regimes II and III, were observed visually, and their non‐dimensional equations were expressed with an acceptable correlation by varying the above operation factors a great deal. Here, regime I is stagnation of particles on a vessel bottom, II is partial suspension, and III is complete suspension in liquid. The non‐dimensional equation of the maximum particle rise height was also successfully obtained. The combination of the non‐dimensional equations of transition and maximum particle rise height permitted us to determine the adequate solid/liquid mixing operation conditions without collision of particles with device parts.
Keywords
mechanical stirring
PIV
sedimentary particle
solid/liquid mixing
suspension
Note
This is the peer reviewed version of the following article: Yuichiro Tokura et. al. Suspension pattern and rising height of sedimentary particles with low concentration in a mechanically stirred vessel. Canadian Journal of Chemical Engineering (2020), which has been published in final form at https://doi.org/10.1002/cjce.23842. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
This fulltext is available in July 2021.
Published Date
2020-07-12
Publication Title
Canadian Journal of Chemical Engineering
Publisher
Wiley
ISSN
0008-4034
NCID
AA00597565
Content Type
Journal Article
language
英語
OAI-PMH Set
岡山大学
File Version
author
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.1002/cjce.23842