このエントリーをはてなブックマークに追加
ID 30048
FullText URL
Author
Ando, Yasuaki
Konishi, Masami
Abstract

An optimal finite-dimensional modeling technique is presented for a standard class of distributed parameter systems for heat and diffusion equations. A finite-dimensional nominal model with minimum error bounds in frequency domain is established for spectral systems with partially known eigenvalues and eigenfunctions. The result is derived from a completely characterized geometric figure upon complex plane, of all the frequency responses of the systems that have (i) a finite number of given time constants T/sub i/'s and modal coefficients k/sub i/'s, (ii) an upper bound /spl rho/ to the infinite sum of the absolute values of all the modal coefficients k/sub i/'s, (iii) an upper bound T to the unknown T/sub i/'s, and (iv) a given dc gain G(0). Discussions are made on how each parameter mentioned above makes contribution to bounding error or uncertainty, and we stress that steady state analysis for dc input is used effectively in reduced order modeling and bounding errors. The feasibility of the presented scheme is demonstrated by a simple example of heat conduction in ideal copper rod.

Keywords
copper
distributed parameter systems
eigenstructure assignment
frequency response
frequency-domain analysis
heat conduction
modelling
multidimensional systems
reduced
order systems
Note
Digital Object Identifier: 10.1109/CDC.2003.1272582
Published with permission from the copyright holder. This is the institute's copy, as published in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, 9-12 Dec. 2003, Volume: 1 Pages 330-335.
Publisher URL:http://dx.doi.org/10.1109/CDC.2003.1272582
Copyright © 2003 IEEE. All rights reserved.
Published Date
2003-12
Publication Title
Decision and Control
Start Page
330
End Page
335
Content Type
Journal Article
language
英語
Refereed
True
DOI
Submission Path
industrial_engineering/72