start-ver=1.4 cd-journal=joma no-vol=151 cd-vols= no-issue= article-no= start-page=064702 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of Hot Ice Caused by Carbon Nanobrushes en-subtitle= kn-subtitle= en-abstract= kn-abstract= Confinement in nanoscaled porous materials changes properties of water significantly. We perform molecular dynamics simulations of water in a model of a nanobrush made of carbon nanotubes. Water crystallizes into a novel structure called dtc in the nanobrush when (6,6) nanotubes are located in a triangular arrangement, and there is a space that can accommodate two layers of water molecules between the tubes. The mechanism of the solidification is analogous to formation of gas hydrates: hydrophobic molecules promote crystallization when their arrangement matches ordered structures of water. This is supported by a statistical mechanical calculation, which bears resemblance to the theory on the clathrate hydrate stability. en-copyright= kn-copyright= en-aut-name=YagasakiTakuma en-aut-sei=Yagasaki en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiMasaru en-aut-sei=Yamasaki en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoMasakazu en-aut-sei=Matsumoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaHideki en-aut-sei=Tanaka en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END