このエントリーをはてなブックマークに追加
ID 52906
FullText URL
Title Alternative
Method to Extract Remarkable Words and Grouped Accidents according to Co-occurrence and Frequency of Words
Author
MUNESAWA, Yoshiomi
Abstract
 事故事例の統計解析により,事故の共通要因を抽出する試みがなされている.しかし,その手法は膨大な言葉で記された事故の詳細を,「操作ミス」,「能力不足」といった人為的に定められた分類要因へ分類する統計解析であるため,解析結果から直接事故の要因を知ることは難しい.  そこで本手法は,自然言語処理の機械テキストマイニング技術を用い,形態素解析で事故報告書等の文章中の出現頻度の多い単語を注意要因として抽出し,注意要因を用いて原因表現をグループ化するという方法で類似事例を抽出する.グループ化された類似事例は,事例の数から事故の頻度を定量的に評価でき,頻発する事故の内容を知ることができる特徴がある.本手法をPEC-SAFER事故事例集に適用し注意要因や類似事例を抽出する事ができたので報告する.
Abstract Alternative
 Common factors of accident cause are attempted to extract from accident reports by the statistical analysis. The result from the conventional analysis is difficult to show the factor of accident directly because this analysis classifies a vast description of accident reports into existing classification factors such as “mistaken operation” and “lack of ability”. In this paper, the proposed method reveals common factors in accident report automatically by extracting remarkable factors and grouped accidents. The remarkable factor shows appearance frequency in accident report. The grouped accidents which are evaluated as based on the number of accidents in one group have a characteristic of frequent accident. This paper reports our method was applied to PEC-SAFER accident reports to acquire remarkable factors and similar accident cases.
Keywords
事故事例
形態素解析
注意要因
テキストマイニグ
Published Date
2012-10-15
Publication Title
安全工学
Publication Title Alternative
Journal of Japan Society for Safety Engineering
Volume
volume51
Issue
issue5
Publisher
安全工学会
Start Page
319
End Page
326
ISSN
0570-4480
NCID
AN00012812
Content Type
Journal Article
language
日本語
Copyright Holders
安全工学会
File Version
publisher
Refereed
True